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S 

The present report  i s  concerned with the development of 
finite-element methods f o r  the treatment of the nonlinear be- 
havior of complex s t ructures .  
previous study reported i n  SA Contractor's R e p o r t  CR-803. The 
nonlinearity may be of two types, material nonlinearity asso- 
ciated with p l a s t i c  deformation and geometric nonlinearity asso- 
c ia ted with the changing geometry of the s t ruc ture  as i t  deforms,: 
o r  i t  may involve a combination of the two. Effects due to creep 
and other time-dependent material p r o p e r t i e s  are neglected. 

It represents an extension of a 

The methods developed are applicable to  loading conditions 
tha t  cause membrane stress states o r  pure bending, or both i n  
combination e The Prager-Ziegler kinematic hardening theory of 
p l a s t i c i t y  i s  incorporated i n  the f i n i t e  element methods to  
a l l o w  fo r  consideration of the p l a s t i c  response of s t ructures  
subjected to  r e a l i s t i c  loading conditions, including cycl ic  load- 
ings tha t  cause stress reversals i n to  the p l a s t i c  range. Ideally 
p l a s t i c  behavior i s  a l so  included t o  provide capabi l i ty  f o r  pre-  
dict ing the collapse load of s t ructures .  The p l a s t i c i t y  theory 
i s  implemented i n  the f i n i t e  element analysis by using an in- 
cremental approach i n  conjunction with the i n i t i a l  s t r a i n  con- 
cept, with p l a s t i c  s t r a ins  interpreted as i n i t i a l  s t r a ins .  

The treatment of geometric nonlinearity requires use of an 
incremental technique i n  which the internal  forces and configura- 
t ion of the s t ruc ture  are continuously updated to account for  i t s  
changing geometry, 

The methods developed are applied to  a number of sample 
s t ructures ,  For membrane stress states alone, the analysis em- 
ploys a tr iangular f i n i t e  element i n  which stress and s t r a i n  vary 
l inear ly .  
var ie ty  of s t ructures  characterized by regions of rapid stress 
var ia t ion and subjected t o  cyclic loading resu l t ing  i n  reversed 
p l a s t i c i t y .  
experimental data indicate good correlation. 

This element i s  used fo r  the p l a s t i c  analysis of a 

Comparisons between the r e s u l t s  of the analysis and 

P l a s t i c  analyses have also been performed fo r  a var ie ty  of 
beam and p l a t e  s t ruc tures ,  
rectangular and triangular f i n i t e  elements Among the problems 
considered a r e  rectangular, c i rcu lar ,  and annular plates with 

These problems make use of ref ined 
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various boundary conditions. nce again, comparisons with re- 
s u l t s  of other avai lable  analyses are favorable. 

Problems of combined bending and s t re tching of plates are 
a l so  considerede Results are obtained for rectangular and c i r -  
cular  plates ,  Results f o r  combined geometric and material non- 
l i n e a r i t y  are presented for  beams and arches, 
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1. INTRODUCTION 

Redundant s t ruc tures  constructed of duc t i le  materials can, 
as i s  w e l l  known, withstand subs tan t ia l  increases i n  loading, as 
compared with similar s t ruc tures  constructed of equal strength,  
b r i t t l e  materials The a b i l i t y  t o  determine the reserve strength 
of these s t ruc tures  accurately and provide the technology for  
predicting the i r  f a i l u r e  loads under a var ie ty  of r e a l i s t i c  load- 
ing conditions has stimulated subs tan t ia l  e f f o r t s  toward develop- 
ing methods for  the analysis  of s t ruc tures  i n  the p l a s t i c  range. 

Considerable progress has been made recent ly  i n  developing 
general methods of p l a s t i c  analysis .  This progress i s  la rge ly  
a t t r i bu tab le  to  advances i n  the f i e l d  of numerical methods of 
s t ruc tura l  analysis ,  spec i f ica l ly ,  the f inite-element method. 
The treatment of nonl inear i t ies ,  both physical and geometric, 
within the framework of ex is t ing  f i n i t e  element techniques, per-  
m i t s  analysis  of s t ruc tures  of a rb i t r a ry  shape and consideration 
of a var ie ty  of loading and boundary conditions. 

References 1 through 20 are representat ive of recent inves- 
t iga t ions  concerned with incorporating the e f f ec t s  of p l a s t i c  be- 
havior i n  finite-element analysis .  These s tudies  describe tech- 
niques t o  treat  p l a s t i c i t y  by means of various algorithms tha t  
l inear ize  the basical ly  nonlinear problem. 

This report  i s  an extension of a previous study made under 
NASA Contract NAS 1-5040 and reported i n  Ref. 11. The earlier 
study developed discrete-element methods f o r  the p l a s t i c  analysis  
of complex built-up s t ruc tures  i n  states of b iax ia l  membrane 
stress, with par t icu lar  emphasis on Che e f f e c t  of cyc l ic  loading 
causing stress reversals i n  the p l a s t i c  range. To accommodate 
t h i s  case, the methods implemented a p l a s t i c i t y  theory tha t  can 
take in to  account the Bauschinger e f f ec t .  This theory i s  the 
kinematic hardening theory of Prager (Refs. 21  and 22) as modi- 
f i e d  by Ziegler (Ref 23) * It can represent the sa l i en t  features  
of the p l a s t i c  behavior of s t ruc tura l  metals, and i s  readi ly  i m -  
plemented i n  a discrete-element analysis .  

Although the methods developed. i n  Ref. 11 can treat  cyc l ic  
loading and accommodate idea l ly  p l a s t i c  or  s train-hardening mate- 
r i a l  behavior, they have subs tan t ia l  l imi ta t ions ,  v iz  e , 



The s t ruc tura l  ideal izat ions considered i n  Ref e 11 
w e r e  l imited to  bar elements, i n  which only axial  
stress is  present (uniform and l inea r ly  varying) , 
and to  th in  planar elements tha t  carry only a 
uniformly dis t r ibuted b iax ia l  membrane stress, 
Thus s t r a i n  var ia t ion i n  the middle surface of a 
th in  planar element o r  through i t s  thickness as a 
r e s u l t  of bending w a s  not  t reated.  

The e f f e c t  of geometric nonlinearity w a s  not  taken 
in to  account. Thus the change i n  the s t ruc ture ' s  
s t i f f n e s s  propert ies  due t o  the nonlinear s t ra in-  
displacement re la t ions  and t o  the changing geome- 
t r y  of the deformed s t ruc ture  w a s  neglected, 

A s  a r e s u l t  of the current  investigation, these r e s t r i c t ions  

Two principal  areas are discussed in  this repor t .  
have been removed and the methods developed i n  Ref. 11 have been 
extended. 

F i r s t ,  plastic analysis  methods are developed i n  which a 
nonuniform s t r a i n  d is t r ibu t ion  i s  assumed to  e x i s t  within each 
element. Two types of s t r a i n  variatior;  are considered within the 
framework of t h i s  assumption. In the f i r s t ,  a l inear  var ia t ion 
i n  the middle surface of a th in  planar element i s  assumed, Using 
an element with a l i nea r ly  varying s t r a i n  d is t r ibu t ion  has a two- 
fo ld  advantage over the constant s t r a i n  element: i t  can provide 
a more accurate descr ipt ion of the state of stress i n  a s t ruc-  
ture,  par t icu lar ly  i n  regions of high stress gradient,  than the 
constant s t r a i n  element used previously; and i t  provides a more 
e a s i l y  interpreted description of the state of stress, These 
features  are desirable  since accurate representation of stress 
i s  par t icu lar ly  important i n  p l a s t i c i t y  analyses. 

The second type of s t r a i n  var ia t ion considered i s  tha t  
through the thickness of the element and i s  intended fo r  applica- 
t ion  to  s t ruc tures  with p l a t e  o r  she l l  components i n  which bend- 
ing e f f ec t s  may be s igni f icant ,  
vary l i nea r ly  from the upper and/or lower surface of the element 
t o  an e l a s t i c -p l a s t i c  boundary located a t  some point through the 
thickness. The f i n i t e  elements chosen fo r  use i n  the plast ic  
bending analysis  include a beam element of rectangular cross 
section, a 16 degree-of-freedom rectangular p l a t e  element, and 
an 

Plast ic  s t r a ins  are assumed to  

18 degree-of-freedom tr iangular  bending element, 
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The second area here discussed i s  the development of f i n i t e  
element methods to  treat geometrically nonlinear behavior of 
e l a s t i c  and p l a s t i c  s t ructures .  To t h i s  end, an incremental pro- 
cedure i s  used tha t  involves l inear iz ing the problem within each 
of a series of steps associated with an incrementation of the 
applied loading, 

Simultaneous treatment of p l a s t i c i t y  and geometric nonlin- 
e a r i t y  i s  accomplished by combining the i n i t i a l  s t r a i n  concept 
with the incremental geometric nonlinear procedure a The r e su l t -  
ing incremental procedure involves solving a new l inear  problem 
a t  each s t e p  of the loading process, with changing geometry caus- 
ing changes i n  the sciffness-influence coeff ic ient  matrices, and 
with p l a s t i c i t y  accounted f o r  by means of the i n i t i a l  s t r a in -  
p l a s t i c  s t r a i n  analogy i n  conjunction with subsidiary consti tu- 
t i v e  re la t ions  from an appropriate p l a s t i c i t y  theory. 

Application of the methods has been made t o  a broad spectrum 
of sample s t ruc tures ,  By t h i s  means it  i s  possible t.o determine 
the l i m i t s  of appl icabi l i ty  of the methods and consequently to  
s ingle  out those deficiencies which might otherwise be undetect- 
able i n  a numerical method of analysis such as the f i n i t e  element 
method e 
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LIST OF SYMBOLS 

a 

b 

length of beam o r  rectangular plate; radius  of 
c i rcu lar  p l a t e  

width of rectangular p l a t e ;  inner radius of annular 
p l a t e  

C hardening coef f ic ien t  

d generalized displacement 

e las t ic  s t r a i n  e e 

0 e 

T e 

i n i t i a l  e l a s t i c  s t r a i n  

t o t a l  s t r a i n  

E Young s modulus 

f yield o r  loading function 

h p l a t e  thickness 

theore t ica l  e l a s t i c  stress concentration fac tor  
based on nominal ne t  sect ion stress % 

K K I  p l a s t i c  stress concentration fac tor  based on 
nominal ne t  sect ion stress for  i n i t i a l  t ens i l e  
loading and reversed loading from i n i t i a l  tension, 
respect ively 

P’ P 

Q length of beam f i n i t e  element 

M 
0 

M* 

n 

21 
0 1  

f u l l y  p l a s t i c  moment . r M = 0 t 
l o  

yield. moment 

shape parameter used i n  Ramberg-Qsgood stress- 
s t r a i n  r e l a t ion  

N M  components of membrane stress resu l tan ts  Nx’ y, xy’ 
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N c r i t  

P 

B 9  Po 

t 

u3 v 

U 

W 

x9 Y3 - 
Z 

a 

a i j  

A 

i g  E 

92 

dh 

elast ic  buckling stress resu l tan t  

applied load in tens i ty  

- & y d A ,  1 -9 .  1 
LPrq - JJ area in tegra l  

nodal generalized forces 

e f fec t ive  plast ic  load 

r a d i a l  coordinate 

nominal ne t  sect ion stress 

half  -thickness of p l a t e  

in-plane displacement components 

s t r a i n  energy 

transverse disphcement 

loca l  coordinates of f i n i t e  element 

depth of e l a s t i c -p l a s t i c  boundary for  beams and 
plates 

r a t i o  of applied membrane stress resu l tan t  t o  
buckling membrane stress resu l tan t  

coordinates of center of loading surface 

denotes an incremental quantity 

p l a s t i c  s t r a i n  

nonlinear t e r m s  i n  strain-displacement re la t ions  

d i f f e ren t i a l  of sca la r  quantity appearing i n  flow 
r u l e  

d i f f e ren t i a l  of sca la r  quantity appearing i n  
Ziegler s hardening ru l e  
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V 

CJ i J  

(5 
0 

0,7 CJ 

CJca 

cu i 

Matrices: 

[A 1 

[E 1 

[E 1 

1 

Poissono s r a t i o  

components of stress 

yield stress 

parameter i n  Ramberg- sgood s t r e s s - s t r a in  r e l a t ion  

f r ee  f i e l d  stress 

triangular area coordinate (see Appendix F) 

matrix r e l a t ing  t o t a l  s t r a ins  i n  s t ruc ture  t o  
applied load 

matrix r e l a t ing  stresses i n  s t ructure  t o  applied 
load 

matrix r e l a t ing  p l a s t i c  s t r a i n  increments to 
stress increments i n  strain-hardening f i n i t e  
element [Eq e (A e 8) ] 

matrix re la t ing  e l a s t i c  s t r a ins  t o  stresses i n  a 
f i n i t e  element [Eq. (A.19) 3 

matrix expressing condition of tangency of stress 
increment vector t o  yield or  loading surface i n  an 
individual ideal ly-plast ic  element [Egi a (A.11) ] 

matrix expressing condition of normality of 
p l a s t i c  s t r a i n  increment vector to yield o r  load- 
ing surface i n  an individual ideal ly-plast ic  
f i n i t e  element [Eqo (A.14) ] 

matrix defined by Eq.  (A.23) 

e l a s t i c  s t i f f n e s s  matrix for  a f i n i t e  element 

i n i t i a l  s t r a i n  s t i f f n e s s  matrix for  a f i n i t e  
element based on an assumed d is t r ibu t ion  fo r  
increment of i n i t i a l  (p las t ic )  s t r a i n  
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1 

[k'l) ] 

i n i t i a l  s t r a i n  s t i f fnes s  matrix fo r  a f i n i t e  
element based on an assumed d is t r ibu t ion  fo r  
i n i t i a l  (p las t ic )  s t r a i n  

i n i t i a l  stress s t i f fnes s  matrix fo r  a f i n i t e  
e 1 emen t 

[R 1 matrix re la t ing  stress increments t o  t o t a l  s t r a i n  
increments for  a s train-hardening material 
[defined i n  Eq. (A.22) ] 

[w I matrix re la t ing  element s t r a i n  to  nodal gen- 
eral ized displacements 

[Gp 1 

>k 
[wp 1 

matrix r e l a t ing  element i n i t i a l  (p las t ic )  s t r a i n  
increment t o  i n i t i a l  (plast ic)  s t r a i n  increment a t  
nodes 

matrix r e l a t ing  element t o t a l  plast ic  s t r a i n  to  
t o t a l  p l a s t i c  s t r a i n  a t  nodes 

orthogonal transformation matrix re la t ing  gen- 
eral ized nodal displacements i n  the loca l  co- 
ordinates axes t o  the global axes 

{Ad vector defined i n  E q .  (A.15) 

Matrix Notation: 

column vector 

[ I  square o r  rectangular matrix 

[ 1 '  

d 

0 

i 

diagonal matrix 

transpose 

inverse 

used as a subscript  denotes a diagonally pa r t i -  
tioned matrix 

used as a subscript  denotes nodal quant i t ies  

used as a superscr ipt  denotes i t h  incremental 
load s t e p  
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2, THOBS OF ANALYSIS 

The methods developed here are of the incremental types 
since solutions to  problems involving material nonlinearity,  when 
i t  i s  present alone o r  i n  combination with geometric nonlin- 
ear i ty ,  are bes t  obtained by solving a sequence of l inear  prob- 
l e m s  associated with an incremental appl icat ion of the loading e 

The formulation of the governing matrix equation i s  developed 
within the framework of the displacement method of finite-element 
analysis .  A s  i n  a l i nea r  e las t ic  analysis ,  assumptions are made 
concerning the displacement f i e l d  within an individual f i n i t e  
element i n  t e r m s  of d i scre te  quant i t ies  a t  node points ,  In addi- 
t ion,  assumptions may be made concerning the d is t r ibu t ion  of 
p l a s t i c  s t r a i n  (or i t s  increment corresponding to  an increment i n  
loading) within each element. P l a s t i c i t y  i s  included by in t ro-  
ducing the e f f ec t s  of i n i t i a l  s t r a ins  in to  the governing matrix 
equation and then in te rpre t ing  these i n i t i a l  s t r a ins  as p l a s t i c  
s t r a ins  e St i f fness  matrices addi t ional  t o  the usual e l a s t i c  
s t i f fnes s  matrices fo r  small displacements are introduced to  
treat  problems of combined nonl inear i ty  involving small s t r a ins  
and large displacements. 

Formulation of General Matrix Equation 

A s  a f i r s t  s t e p  i n  the analysis ,  the assumptions concerning 
displacements and i n i t i a l  s t r a ins  are used to  derive the force- 
displacement re la t ions  for  an individual f i n i t e  element. This i s  
accomplished by appl icat ion of the pr inciple  of v i r t u a l  work or  
through a consis tent  energy approach. re w e  use the la t ter  
and, i n  accordance with an incremental approach, the equations 
are derived from the expression fo r  the increment of s t r a i n  en- 
ergy * 

The increment i n  e l a s t i c  s t r a i n  energy AU from an i n i t i a l  
e l a s t i c  s t r a i n  state {eo> may be wri t ten as 

dV 
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where {a }  represents the stresses, (nee] i s  the increment i n  
e l a s t i c  s t r a in ,  and the t r i p l e  integrat ion i s  carr ied out through 
the volume V of the element. 

S t r i c t l y  interpreted,  Eq, (1) i s  va l id  only for  l i nea r  elas- 
t i c  material behavior, However, by analogy with the equivalence 
between temperature gradients and body forces i n  causing a s t r a i n  
f i e l d  i n  thermoelasticity, plastic stra'ins can s imilar ly  be re- 
l a t ed  to  f i c t i t i o u s  body forces (Refs. 24 and 25) @ This permits  
application of known analy t ica l  techniques of e l a s t i c i t y  to  the 
analysis of bodies subjected t o  p l a s t i c  s t r a i n .  

In the presence of plastic s t r a ins ,  t h e  incremcxt of e l a s t i c  
s t r a i n  can be wr i t ten  as 

where {neT} i s  the increment of t o t a l  s t r a i n  and ' A € }  i s  the 
increment of p l a s t i c  s t r a i n ,  The stresses ( o }  are re la ted  to 
the e l a s t i c  s t r a i n  by the l i nea r  s t r e s s - s t r a in  re la t ion ,  wr i t ten  
as 

where the elements of the matrix [E] 
coeff ic ients .  Similarly, the stresses 
a t  the beginning of the load increment 
responding e l a s t i c  s t r a i n s  as follows, 

are the usual e l a s t i c  
present i n  the s t ructure  
are re la ted  to  the cor- 

The following expression fo r  the increment of s t r a i n  energy i s  
obtained by subst i tut ing Eq,  (3) i n to  Eg. (l), integrating be- 
tween the prescribed l i m i t s  of s t r a i n ,  and then subst i tut ing 
Eqs. (2) and (4) i n to  the resu l t ing  equation. 

10 



1 + -  2 

v 

It is at this stage that the assumptions concerning the dis- 
placement and plastic strain fields must be made. 
tions, although independent of each other, are dependent upon the 
class of problem to be considered (iaeo9 bending or membrane 
stress) and serve to define the stiffness properties of the 
finite element. 
sample structures are discussed in subsequent sections. 

These assump- 

Specific assumptions made and results for some 

Once the assumption concerning the variation of displacement 
within the element is made, the total strain distribution can be 
expressed in terms of nodal displacements by making use of the 
appropriate strcin-displacement relations in conjunction with the 
assumed displacement function. These relations can be written in 
matrix form as follows, 

where [Ado} is the vector of generalized incremental nodal dis- 
placements, [W] is a function matrix (that is, a matrix in 
which the elements are functions rather than constants) that is 
obtained from the linear component of the strain-displacement 
relations , and symbolically represents the nonlinear con- 
tribution to the strain-displacement relations, i .e e , squares and 
products of increments of rotation. The increments of rotation 
[ A @ }  are related to the generalized displacement increments, and 
may be represented as 



where [ W ]  is a function matrix. 

In a plasticity analysis, assumptions may also be made con- 
cerning the distribution of the increment of initial strain (or 
plastic strain) within each element. These assumptions are made 
independently of those concerning the distribution of total 
strain, E q .  (6). The assumed distribution of plastic strain in- 
crements can be written in terms of their values at nodes, as 
follows, 

where {A€,) represents the nodal plastic strain increments, and 
[Gp] is a function matrix that explicitly depends upon the 
assumptions made concerning the distribution of plastic strain 
increments e 

Substituting E q s .  (6) through (8) into E q .  ( 5 ) ,  neglecting 
the higher order contributions of displacement increments in each 
of the integrals, and neglecting as well all terms that are inde- 
pendent of displacement increments, we are led to the following 
expression, 
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where 

[k(') 3 = 1 
= i  [k 1 

[k'l) ] = 1, 

s V 

' r  

V J 

The matrix [k (O) ] i s  the conventional elas t i c  s t i f f n e s s  
matrix, obtained from the l inear  components of the s t r a in -  
displacement re la t ions ;  [E] i s  the i n i t i a l  s t r a i n  s t i f f n e s s  
matrix and accounts fo r  the e f f e c t s  of the presence of i n i t i a l  
s t r a ins ;  [k ( l )  ] represents the i n i t i a l  stress s t i f fnes s  matrix 
and appears as a r e s u l t  of the nonlinear t e r m s  of the s t r a in -  
displacement r e l a t ion .  This l as t  matrix can be considered as an 
addi t ional  component of the element s t i f f n e s s  matrix tha t  ac- 
counts fo r  the e f f e c t  t ha t  the presence of s t resses  has on sub- 
sequent deformations. The elements of the matrix [DO] a r e  
components of the stress state exis t ing a t  the beginning of the 
incremental change i n  energy. Vp i s  the volume of the p l a s t i c  
region i n  each element. 

Application of Gastigliano's f i r s t  theorem t o  Eq. (9) yields 
the following governing incremental l inear  matrix equation fo r  an 
individual f i n i t e  element, 

where {Ap,} represents the vector of increments i n  the gen- 
e ra l ized  nodal forces ,  
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This form i s  convenient to  use i f  the assumptions associated 
with the p l a s t i c  s t r a i n  d is t r ibu t ion  are applied to  the i r  incre- 
mental values. For some types of analysis,  such as bending and 
combined bending and stretching, i t  is  convenient t o  use assump- 
t ions concerning the d is t r ibu t ion  of t o t a l  p l a s t i c  s t r a i n  ra ther  
than of incremental p l a s t i c  s t r a in .  This requires tha t  E q ,  (8) 
be replaced by 

* 
where the elements of the matrix [Wp] represent the assumed 
functional representation of the t o t a l  p l a s t i c  s t r a i n s  ( € 1  in  
t e r m s  of t he i r  nodal values ( E ~ ]  
process, the increment of p l a s t i c  s t r a i n  may be wr i t ten  as 

A t  any s t ep  of the loading 

where the superscripts I and 1-1 r e f e r  t o  current and p re -  
ceding load steps, respectively.  

Substi tuting E q s ,  (12) and (13) i n to  the expression f o r  
s t r a i n  energy, Eq e (5) , and applying Cas t ig l iano  s f i r s t  theorem 
leads to  the  following equation, 

where 

P 



and represents the i n i t i a l  s t r a i n  s t i f fnes s  matrix developed on 
the basis  of assumptions made concerning the d is t r ibu t ion  of 
t o t a l  p l a s t i c  s t r a i n ,  

[E], 
Eq, (IO), and [k*], Eq. (15), may d i f f e r  substant ia l ly .  This i s  
not the case, however, when the assumed d is t r ibu t ion  of the in- 
crement of p l a s t i c  s t r a i n  i s  the same as tha t  for  t o t a l  p l a s t i c  
s t r a i n  and when the i n i t i a l  s t r a i n  s t i f fnes s  matrix [k*] does 
not change with each load increment. The following equivalence 
i s  then v a l i d  

In general, the i n i t i a l  s t r a i n  s t i f fnes s  matrices 

and E q s .  (11) and (14) can be used interchangeably. 

ter i a l  Monl inear i t y  

If w e  i n i t i a l l y  neglect the e f f ec t s  of changing geometry and 
w r i t e  the e l a s t i c  s t i f f n e s s  matrix as 

(''1 = [k ] [k")] + [k e 

then Eqs, (11) and (14) may be rewri t ten as 

b p  0 Ii = [k e 3 

and 

It should be noted tha t  the i n i t i a l  stress s t i f fnes s  matrix 
[k(l)  ] 
l i nea r i ty ,  but may be required i n  such other cases as the bending 
of plates subjected t o  membrane s t r e s s .  

i s  not necessarily associated only with geometric non- 
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e - Equations (18) 
and (19) may be put in to  a l te rna t ive  forms su i tab le  f o r  numerical 
solution; associated with each of these forms, there are al terna-  
t i ve  procedures for  effect ing a solution. In the following d is -  
cussion, w e  dis t inguish between the basic  forms employed by using 
the term 'hethod"; w e  dis t inguish between the solut ion procedures 
employed by using the t e r m  "procedure." 
placement method" and a " s t r a in  method," and associated with each 
there i s  a "predictor procedure" and a "d i rec t  subs t i tu t ion  pro- 
cedure." In the f i r s t  "method" t o  be t reated,  the product of the 
i n i t i a l  s t r a i n  s t i f fnes s  matrix and the vector of plast ic  s t r a ins  
(or t he i r  increments) can be considered as an "effect ive p l a s t i c  
loading, represented i n  Eq, (18) as 

Thus w e  define a "dis- 

11  

or  i n  Eq. (19) as 

In Eq. (2Qb) the increment of the e f fec t ive  p l a s t i c  loading i s  
determined a t  any s t e p  by taking the difference i n  the products 
of the i n i t i a l  s t r a i n  s t i f fnes s  matrix and the vector of t o t a l  
plast ic  s t r a ins  i n  two consecutive s teps .  In t h i s  way, only 
t o t a l  values of p l a s t i c  s t r a i n  are u t i l i z e d  i n  the governing 
l i nea r  matrix equation. 

The desired form of the equation i s  obtained by grouping 
together the increments of generalized nodal forces and ef fec t ive  
p l a s t i c  loads, resu l t ing  i n  the following equation, 

Here it  can be seen tha t  the values of the increments of f i c -  
t i t i o u s  loads introduced in to  Eq. (21) are taken to  be equal t o  
those computed i n  the preceding load increment and are thus known 
quant i t ies  i n  t h i s  equation. 
procedure" obviates the necessity of introducing the p l a s t i c  
s t r e s s - s t r a in  re la t ions  exp l i c i t l y  in to  the governing matrix 
equation 

The use of this type of "predictor 
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Equation (21) i s  wr i t ten  f o r  each element i n  the s t ruc tura l  
ideal izat ion,  and then, by an appropriate process of assemblage, 
the over-all  l i nea r  matrix equation f o r  the e n t i r e  s t ruc ture  i s  
formed, This resu l t ing  equation i s  ident ica l  i n  form to  tha t  of 
Eq, (21) and can be wr i t ten  as 

where capi ta l iza t ion  of the 
the corresponding assembled 

symbols i n  t h i s  equation represents 
o r  "stacked" matrices. The above 

equation may be wr i t ten  i n  terms of t o t a l  quant i t ies ,  ra ther  than 
i n  the incremental form, fo r  the case when the e l a s t i c  s t i f fnes s  
matrix [G] remains constant, i e e e ,  

The incremental solution technique using e i the r  of Eqs. (22) 
reduces to  a sequence of l i nea r  problems i n  which the applied 
loading i s  constantly modified by the e f fec t ive  p l a s t i c  load 
vector. Thus, with the increments of generalized displacement 
obtained from Eqs, (22) the l i nea r  matrix equation, Eq. ( 6 )  , 
together with Eqs. (A.22) and (A .8 ) ,  and the const i tut ive p l a s -  
t i c i t y  r e l a t ions  presented i n  Appendix A 
complete solution fo r  increments of t o t a l  s t r a in ,  stress and 
p l a s t i c  s t r a in ,  respectively,  assuming e l a s t i c  strain-hardening 
material behaviors The corresponding re la t ions  [replacing 
Eqs, (A.22) and (A.8)  ] for  an e l a s t i c ,  ideal ly-plast ic  material 
a r e  given i n  Eqs. (A.23), (A.16)  , and (A.17) e After summing a l l  
incremental quant i t ies  t o  determine current values of the p e r t i -  
nent variables,  new values of the increments of f i c t i t i o u s  load 
(Aq} are determined fo r  each element i n  the p l a s t i c  range, and 
the procedure i s  repeated u n t i l  the end of the loading process i s  
reachedo 

are used to  obtain the 

* - The predictor pro- 
cedure solution technique can a l s o  be applied i n  an a l te rna t ive  
formulation of the problem involving a d i r ec t  solution for  the 
increments of t o t a l  s t r a i n .  This a l te rna t ive  formulation i s  ap-  
pl icable  t o  those problems i n  which an e x p l i c i t  solution for  dis-  
placements, or t he i r  increments, i s  not required, and where the 
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i n i t i a l  s t r a i n  s t i f f n e s s  matrix [k] does not change throughout 
the loading range, The governing matrix equation i n  t h i s  formu- 
l a t i o n  i s  determined by subst i tut ing Eq, (17) in to  E q ,  (ll), 
performing the necessary stacking operation f o r  application to  
the e n t i r e  s t ructure ,  then solving f o r  displacements, as follows, 

-I- [z ]  1) - l o  
and f i n a l l y  subst i tut ing E q .  (23) i n t o  the 'Linear portion of the 
s train-displacement re la t ions ,  Eq, (6) (evaluated a t  nodes o r  
a l t e rna t ive ly  a t  some point within each element and assembled to  
apply t o  the whole structure) yielding the following expression 
f o r  the vector of increments of t o t a l  s t ra in :  

where 

-1 
[AI = [Wol[Ke1 

and 

If w e  wish to  use a predictor procedure to  solve E q ,  (24 ) ,  
w e  must write t h i s  r e l a t ion  i n  the following formJ 

= [ A ]  J 4- [ J ]  ?aEg} J i-1 
be:}i 1 

Using values of estimated i n  t h i s  way, w e  can f ind 
the unknown t o t a l  s t r a i n  increments from E q .  (25), and then f ind  
the increments of stress and p l a s t i c  s t r a i n  from E q s .  (A,22) and 
(A 8) fo r  s train-hard.ening behavior , or from E q s  , (AB 23) , (AD 16) , 
and (A.17) , fo r  ideal ly  p l a s t i c  behavior, 

The predictor procedure, involving the use of estimated 
values of p l a s t i c  s t r a i n  i n  E q ,  (22) or  Eq. (25), has computa- 
t ional  advantages since the solution requires only matrix 
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multiplication i n  each load s t e p  once the corresponding ef fec t ive  
p l a s t i c  load vector i s  formed, provided the matrix [ % I  i s  con- 
s t an t  and thus need be inverted only once. This d i f f e r s  from the 
d i r ec t  subst i tut ion procedure t o  be discussed below, i n  which 
matrix inversion or  simultaneous equation solution i s  required a t  
each load s t e p  owever, a disadvantage associated with the pre-  
dictor  procedure solution techni e i s  a propagation of error 
as plast ic  s t ra ining proceedso 
small load increments for  improved accuracy, thereby reducing the 
computational advantage of t h i s  procedure 

nce it  may be necessary t o  use 

In Refs, 1, 4,  5, and 11 the predictor procedure i s  a l so  
formulated i n  t e r m s  of a governing matrix equation re la t ing  i m -  
crements of stress to  increments of load and p l a s t i c  s t r a in ,  as 
follows , 

This procedure, re fe r red  to  as a 11 constant stress" procedure, has 
been shown to  lead to  a charac te r i s t ic  numerical i n s t a b i l i t y  
(Refs, 1, 5, and 11) e No such i n s t a b i l i t y  occurs when the p re -  
dictor  procedure i s  used i n  conjunction with Eq. (22) o r  Eq, (25), 

A detai led discussion of the formulation of the coeff ic ient  
matrices of Eqs. (25) and (26) i s  presented i n  Appendix B for  a 
tr iangular membrane element i n  which a l i nea r  s t r a i n  var ia t ion  . i s  
assumed. 

- The 
use of Eqs. (22), (25), or (26) i s  usually associated with the 
i n i t i a l  s t r a i n  method of finite-element p l a s t i c i t y  analysis e An 
a l t e rna t ive  approach, commonly re fer red  to  as the tangent modulus 
method, involves the d i r e c t  subst i tut ion of the incremental con- 
s t i t u t i v e  p l a s t i c i t y  re la t ions  in to  the governing matrix equa- 
tion, Eq. (18) For an e l a s t i c ,  strain-hardening material, 
Eqs, (A.8) and (A.22) may be combined to  yield an incremental re- 
l a t i o n  between p l a s t i c  s t r a ins  and t o t a l  s t r a ins ,  as follows, 
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The strain-displacement r e l a t ion  of Eq. (6) (considering only the 
l inear  component) can be subst i tuted in to  Eq, (27) t o  yield the 
following re la t ion ,  

Equation (28) must be evaluated a t  each p l a s t i c  node of any ele- 
ment, and can be wr i t ten  as 

where 

[rj I = o 

] = [ r . ]  J Ad } 
l o  J I O  

i f  node j i s  e l a s t i c  and 

Substituting E q s .  (17) and (29) i n to  Eq, (11) yields the 
following incremental load-deflection r e l a t ion  for  an individual 
element, 

where 

and the matrix [I?] represents the assembled nodal [rj] 
matrices for  the element. 

For an e l a s t i c ,  ideal ly-plast ic  material the incremental re- 
l a t ion  between p l a s t i c  s t r a i n s  and t o t a l  s t r a ins  is  obtained by 
subst i tut ing Eq. (A.23)  i n to  Eq. (A.17) t o  yield the following 
equation 
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The corresponding incremental plast ic  strain-displacement rela- 
t ion,  obtained by subst i tut ing the strain-displacement r e l a t ion  
[the l inear  portion of Eq.  ( 6 ) ] ,  in to  E q ,  (31), may be wri t ten as 

The nodal p l a s t i c  s t r a i n  increments can again be wr i t ten  i n  t e r m s  
of displacement increments, as i n  Eq. (29), where now 

E L I  = 0 i f  node j i s  

* -1 [r j ]  = [;][E ] [ W j ]  i f  node j i s  

The matrix E%; i n  E q .  (30) may be 
t i c  s t i f f n e s s  matrm since i t  e x p l i c i t l y  

e l a s t i c ,  and 

p l a s t i c  

looked upon as a "plas-  
contains the e f f e c t  of 

p l a s t i c i t y  and enters  into the analysis as an additional compo- 
nent of the t o t a l  s t i f fnes s  matrix. Further, since the elements 
of [kp] are functions of the instantaneous stress s t a t e ,  they 
must be evaluated a t  each incremental s t e p .  

Equation (30)  represents a form tha t  i s  associated with the 
displacement method used i n  conjunction with the "d i rec t  substi-  
tution" or tangent modulus procedure. An a l te rna t ive  formulation 
of t h i s  method and procedure t h a t  avoids any exp l i c i t  assumption 
as to  the d is t r ibu t ion  of p l a s t i c  s t r a ins  i s  obtained by reform- 
ing Eq, (11) without making use of Eq.  (8), and excluding con- 
s iderat ion of [k ( l )  ], t o  yield the following re la t ion ,  

J J J  V 

For an elas t i c  
p l a s t i c  strain-nodal 

strain-hardening material , the increrneiital 
displacement re la t ion  of Eq, (28) may be 
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subst i tuted in to  Eqe ( 3 3 1 ,  which r e s u l t s  i n  the following incre- 
mental load-displacement re la t ion ,  

where, a f t e r  some manipulation, we  f ind  t h a t  

[%I = ( 3 5 )  

It should be noted from E q ,  (A.22) of Appendix t h a t  [RI-' i s  
the matrix re la t ing  increments of stress to  increments of t o t a l  
s t r a i n  i n  an e l a s t i c ,  strain-hardening material a 

Similarly, fo r  an e l a s t i c ,  ideal ly-plast ic  material the 
matrix r e l a t ing  load increments t o  increments of displacement i s  
given as 

where the product i s  used to relate increments of 
stress t o  increments of t o t a l  s t r a i n  f o r  an e l a s t i c ,  ideally- 
p l a s t i c  material. 

Although E s, (38)  and ( 3 4 )  both relate increments of load 
to  increments of displacement, i n  general, with the exception of 
uniform stress elements 

The matrix [ k ~ ]  represents a reduced or tangent modulus s t i f f -  
ix .  The e f f e c t  of p l a s t i c i t y  i s  exp l i c i t l y  contained 

i n  it throug the matrix (or [E][E*]=l), obtained from 
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the const i tut ive r e l a t ions  corresponding to  the p l a s t i c i t y  theory 
used, This matrix represents the new material s t i f f n e s s  prog- 
erties and replaces the e l a s t i c  material coeff ic ient  matrix [E] 
i n  the expression fo r  [ k l e  

Since the elements of [R]" I  (or [%][E*]-l) are nonlinear 
functions of stress, the expression fo r  [ k ~ ]  i s  not readi ly  in- 
tegrable fo r  f i n i t e  elements other than those tha t  involve the 
assumption of a uniform stress f i e l d ,  Consequently, the elements 
of are determined on the basis  of values of stress a t  some 
point within the element, usually taken a t  the centroid, 

[ k ~ ]  

_L Stra in  method - d i r e c t  subst i tut ion procedure. - The 
d i r ec t  subst i tut ion procedure may a l so  be applied to  the matrix 
equation represented i n  Eq. (24) .  For an e l a s t i c ,  s t r a in -  
hardening material, the incremental plastic s t r a in - to t a l  s t r a i n  
r e l a t ion  given i n  Eq, (27) i s  subst i tuted in to  Eq, (24) t o  yield 
the following r e l a t i o n  

where 

and the subscript d denotes a diagonally parti t ioned matrix, 

Similarly, fo r  an e l a s t i c ,  ideal ly-plast ic  material, 
Eq, (24) i s  wr i t ten  i n  a form ident ica l  t o  tha t  of Eq. (38) ,  
where now 

An equation s i m i l a r  i n  form t o  Eq. (38) ,  re a t ing  stress in- 
crements d i r ec t ly  to  applied loads, s developed i n  Ref, 11. 
For s train-hardening behavior t h i s  a t ion  takes the form: 
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where 

I1 The method of solution using t h i s  equation i s  cal led the stress 
method. I' 

not exhibi t  the charac te r i s t ic  numerical i n s t a b i l i t y  associated 
with the predictor type of solution procedure presented i n  
Eq. ( 2 6 )  The s t r a i n  and stress methods are equivalent when used 
i n  conjunction with the d i r ec t  subst i tut ion procedure e 

Based upon the d i r ec t  subst i tut ion procedure, i t  does 

Summary of Methods for  P l a s t i c  Analysis 

Star t ing with an  expression for  the increment of s t r a i n  en- 
ergy, several a l te rna t ive  governing equations have been presented. 
Three of these equations, namely, Eqs. (21) , ( 3 0 )  , and ( 3 4 )  , are 
wr i t ten  i n  terms of increments of displacement. Although these 
equations are in te r re la ted ,  a basic d is t inc t ion  associated with 
the i r  formulation does e x i s t .  In the case of Eqs. ( 2 1 )  and ( 3 0 )  , 
an assumption i s  made concerning the d is t r ibu t ion  of the i n i t i a l  
s t r a ins  (or t he i r  increments), while i n  the case of Eq. (34)  no 
such assumption i s  required; however, i n  the la t te r  case the ex- 
pression fo r  the tangent modulus s t i f f n e s s  matrix, as given i n  
Eqs. ( 3 5 )  or  ( 3 6 ) ,  must be integrated., 

A fur ther  d i s t inc t ion  among the various formulations i s  
associated with the solution procedures used, which may be named 
the predictor and the d i r ec t  subst i tut ion procedures. 
former, estimated values of plastic s t r a i n  are used i n  the gov- 
erning l inear  matrix equation. Thus p l a s t i c  e f f ec t s  are t reated 
i n  the l i nea r  matrix equation by a modification tha t  i s  external 
t o  the s t i f fnes s  influence coeff ic ient  matrix. In the d i r e c t  
subst i tut ion procedure, p l a s t i c i t y  is  accounted fo r  by means of 
an internal"  modification of the s t i f fnes s  matrix. 

In the 

11 

In the s t r a i n  (or s t ress )  method, represented by Eqs, (25 )  
and (38) [or Eqso (26) and (39)  1, the so le  d is t inc t ion  among 
these equations i s  tha t  associated with the solution procedure 
used 

The d i r ec t  subst i tut ion o r  in te rna l  modification procedure , 
while it  r e t a ins  the e r rors  associated with stepwise l inear iza-  
t ion,  eliminates the propagation of e r ror  associated with the 
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predictor o r  external modification procedure, This improvement 
i n  accuracy for  a given magnitude of the load increment is ,  how- 
ever, accompanied by an increase in the number of nume 
operations required to  obtain a solution. These operations can 
be computationally expensive, since the elements of the influence 
coeff ic ient  matrices, [kp] of Eq. ((30), [ k ~ ]  of E q o  ( 3 4 ) ,  or  

] of Eq. (38), must be recomputed a t  each incremental s t ep  of 
ading. The e f f e c t  of t h i s  can be mitigated by increasing the 

magnitude of the load increment, but a t  the cost  of greater  in- 
accuracyo A choice between the two basic procedures thus in- 
volves a trade off between smaller load increment but less compu- 
t a t ion  p e r  increment, i n  e case of the predictor procedure, and 
larger  load increment but more computation p e r  increment, i n  the 
case of the d i r ec t  subst i tut ion procedure, This choice will not 
be obvious i n  any given problem. 

An approach tha t  combines the two procedures might prove to  
be the most e f fec t ive .  For example, the predictor procedure may 
be su f f i c i en t ly  accurate i n  those regions of a s t ructure  where 
p l a s t i c  flow has begun but has not yet been substant ia l ly  de- 
veloped. In those regions where p l a s t i c  e f f ec t s  are predominant, 
the d i r e c t  subst i tut ion procedure could be used. ']chis hybrid 
procedure i s  most ea s i ly  implemented by using the governing 
matrix equation i n  t e r m s  of t o t a l  s t r a i n  increments (or stress 
increments) , i .e.  , Eqs. (25) and (38) [or E q s  e ( 2 6 )  and 39) 1 a In 
Refs. 3 and 11 t h i s  procedure i s  developed and applied to  a num- 
ber of sample s t ruc tures ,  
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The methods discussed i n  Che preceding section have bee 
p l ied  to  numerous s t ructures  subjected to  a va r i e ty  of loading 
and boundary conditions. The sample s t ructures  were chosen so as 
to  be consistent with the goals of the present study. For the 
case of s t ructures  subjected to  membrane stress alone, these 

cluded an evaluation of the use of a tr iangular element 
t o t a l  s t r a i n  and p l a s t i c  s t r a i n  are assumed to  vary 

d the fur ther  evaluation (supplementing the invest i -  
f s .  9 and 11) of the use of the Prager-Ziegler kine- 

matic hardening theory of p l a s t i c i t y  i n  predicting the essent ia l  
features of cycl ic  loading with stress reversals in to  the p l a s t i c  
range" For the most p a r t ,  the sample s t ructures  w e r e  chosen from 
among those tha t  w e r e  the subject of an independent experimental 
study conducted a t  NASA Langley Research Center (see Refs. 26-28) 
the purpose of ich w a s  to  investigate the p l a s t i c  behavior of 
membrane s tres specimens subjected to  cycl ic  loading condi- 
t ions,  Results from the experiments on ese s t ructures ,  which 
exhibited regions of high stress gradients, provided a s t r ingent  
test of the accuracy of the f i n i t e  element, and provided some 
additional information fo r  the fur ther  evaluation of the Prager- 
Ziegler kinematic hardening theory. 

The methods of p a s t i c  analysis described i n  the preceding 
section have been applied by a number of authors to  s t ructures  
subjected to  membrane stress states (Refs, 8, 9, 11, 19, and 26)). 
For the most p a r t ,  ou r e s u l t s  fo r  membrane stress behavior w e r e  
obtained by using the s t r a i n  (or s t r e s s )  method i n  conjunction 
with the d i r ec t  subst i tut ion procedurep E q .  (38) [or E q ,  (39) 1. 

Before discussing the solutions obtained, a few comments are 
i n  order on the assumptions made i n  the development of par t icu lar  
f i n i t e  elements used i n  modeling the e n t i r e  s t ructure .  In de- 
veloping the governing equations i n  the form of E q s ,  (38) or  (39), 
besides making a displacement assumption, an exp l i c i t  assumption 
must be made concerning the d is t r ibu t ion  of p l a s t i c  s t r a i n  (or 
increments of p l a s t i c  s t r a in )  within each element, 
an assumption, as op osed to  defining the const i  t i ve  re la t ions  
a t  a s ingle  represen a t i v e  poink i n  the element q,, ( 3 4 ) ] ,  i s  a 
concept fundamental t o  these methods a d forms the basis  of our 
analysis.  Since much of the previous work i n  developing methods 
of membrane stress analysis has involved the use of uniform 
s t r a i n  elements, with the associated uniform dis t r ibu t ion  of 

king such 
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p l a s t i c  s t r a i n  implied, t h i s  d i s t inc t ion  has not often been ex- 
p l i c i t l y  s ta ted ,  It becomes c l ea rp  however, when w e  make use of 
a higher order element, the effectiveness of which assumes 
greater  importance i n  a p l a s t i c  than i n  an e l a s t i c  analysis ,  
Whereas a given level o f  er ror  i n  the description of the stress 
f i e l d  may be acceptable i n  an e l a s t i c  analysis,  the same leve l  of 
e r ro r  may not be acceptable i n  a p l a s t i c  one, since the la t ter  is  
especial ly  sens i t ive  to  the accuracy with which the stress is  
predicted. 

To demonstrate the use of a higher order element, 
t ions w e r e  performed using a 6-node, 12 degree-of-freedom tri- 
angular element based on the following quadratic function repre- 
sentation fo r  in-plane displacement 

u = a l + a x + a y + a x y  + a x  2 + a 6 y  2 
2 3 4 5 

2 
v = " 7 + a x + a y f a l * x y + a  8 9 11x + a12Y2 e 

Use o f  t h i s  element, shown i n  Fig. 1, s a t i s f i e s  the above c r i -  
ter ion of providing an accurate description of the state of 
stress i n  a s t ructure ,  par t icu lar ly  i n  regions of high stress 
gradient,  Although, fo r  the purpose of demonstrating the p l a s t i c  
analysis,  we  w i l l  use t h i s  e l e m n t  here, other accurate high 
order elements can s i m i l a r l y  be used. 

Thk fur ther  assumption is made tha t  the p l a s t i c  s t r a i n  (or 
s t r a i n  increments) var ies  l i nea r ly  i n  the plane of the tr iangular 
element, and can be wr i t ten  as 

where i, j, k represent e vertex nodes of the t r iangle .  This 
assumed d is t r ibu t ion  i s  i l l u s t r a t e d  i n  Pigo 2 where it can be 
seen tha t  the l inear  d i s t r ibu t ion  i s  assumed t o  apply between 
ver t ices  of the t r iangle  and over the e n t i r e  area of the element. 
Thus, i f  only one of the ver t ices  of the t r iangle  i s  i n  the p l a s -  
t i c  range, the value of the p l a s t i c  s t r a i n  (or s t r a i n  increment) 
decreases l i nea r ly  to  zero a t  the other tw8 ver t ices .  This 
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eliminates the necessity of locating an e l a s t i c -p l a s t i c  boundary 
in the in t e r io r  of the element, and enables one to  describe the 
d is t r ibu t ion  of p l a s t i c  s t r a i n  increments i n  any element once the 
n.odal values a r e  known. This represents a d i s t i n c t  p rac t ica l  ad- 
vantage over the a l t e rna t ive  approach of assuming a p l a s t i c  
s t r a i n  d is t r ibu t ion  tha t  provides fo r  the existence of an e l a s t i c -  
p l a s t i c  boundary a t  some intermediate posit ion i n  the element, 
although the la t te r  approach const i tutes  a refinement tha t  should 
provide greater  accuracy 

The l inear  function of Eq. (41) is used to  describe a l l  
three components of p l a s t i c  s t r a i n  present i n  a plane stress 
analysis ,  
ponents, w e  obtain the l inear  function matrix [wp] of Eq. (8) 
t ha t  relates p l a s t i c  s t r a i n  increments i n  the element t o  s t r a i n  
quant i t ies  a t  the ver t ices .  This r e l a t i o n  can be wr i t ten  as 

When the function i s  wr i t ten  fo r  each of these com- 

A E X  

A €  
Y 
P 

Ayxy 

= [w 3 P 

where [Wp] i s  a diagonally par t i t ioned matrix whose submatrices 
are composed of the functions shown i n  Eg. (41) 

With the above assumptions f o r  p l a s t i c  s t r a i n  d is t r ibu t ion  
and displacement, the element s t i f f n e s s  matrix and i n i t i a l  s t r a i n  
s t i f fnes s  matrix m y  be exp l i c i t l y  determined, The s t i f f n e s s  
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matrix [k] f o r  t h i s  l inear  strain. element i s  given i n  
and 30, and the i n i t i a l  s t r a i n  s t i f fnes s  matrix 
i n  Appendix C B  

[E] i s  given 

Results 

The six-node l i nea r - s t r a in  t r iangle  ( ST) w a s  used to  gen- 
d [J] matrices of E q ,  (25) [or a l te rna t ive ly  

matrices of E q B  ( 2 6 )  3 This element w a s  then 
used i n  conjunction with the s t r a i n  (or s t ress )  method-direct 
subst i tut ion procedure described i n  Section 2 to  perform a cycl ic  
p l a s t i c  analysis of four sample s t ructures  under cyc l ic  loading. 
These are: 

I> A uniformly loaded rectangular notched bar 
with a theoret ical  stress concentration 
fac tor  of KT = 2 (based on an approxima- 
t i on  due t o  Neuber, Ref, 31) 

A uniformly loaded rectangular notched bar 
with a theoret ical  stress concentration 
fac tor  of KT = 4 ,  

A uniformly loaded rectangular sheet with 
a cent ra l ly  located c i rcu lar  hole. 

A thin annular disk subjected to  a uniform 
in te rna l  pressure. 

The f i r s t  three of these s t ructures  w e r e  the subject of experi- 
mental s tudies  conducted a t  SA Langley search Center by 
John Crews  ( e f ,  26), The data obtained from these studies are 
compared here with the ana ly t ica l  r e s u l t s  obtained from the cur- 
r e n t  investigation e 

e Prager-Ziegler kinematic hardening theory w a s  employed 
i n  each of the cases studied. The use of t h i s  theory re 
the specif icat ion of a parameter, c, which appears i n  
This parameter characterizes 
r i a l  and, i n  the case of uniaxial  stress, can be interpreted as 
the instantaneous slope of the stress versus p l a s t i c  strain 
curve 

e hardening behavior of the mate- 
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In the present application of the kinematic hardening 
eory, a heu r i s t i c  approach i s  used to  obtain the multiaxial 

hardening coeff ic ient ,  one tha t  w a s  previously used i n  
In t h i s  procedure, each stress component i s  t reated as 
alone w e r e  present, and a corresponding value fo r  c is  deter-  
mined on the basis  of a uniaxial s t r e s s - s t r a in  curve from a ten- 
s i le  test o r  of a s t r e s s - s t r a in  curve f r pure shear, These 
curves can be described by the Ramberg- sgood parameters [cf e 

Eq, (A,24) , ppendlex A ] .  A single  value of c for  the m u l t i -  
ax i a l  case then computed as a weighted average of the indi- 
vidual components. This procedure has proved ade ate f o r  the 
c l a s s  of problems represented by the notched bars 
sheet with a c i rcu lar  hole here considered. wever, i t  i s  not 
generally applicable, and i t s  use must be reevaluated f o r  each 
s t ructure  encounteredo One of i t s  most serious shortcomings i s  
the lack of invariance with respect t o  a ro ta t ion  of the coordi- 
nate axeso This shortcoming i s  minimized fo r  the s t ructures  con- 
sidered since the stress component i n  the direct ion of the ap- 
pl ied loading predominates throughout the s t ruc ture  e Further 
study of t h i s  problem, including the generation of additional ex- 
perimental data, par t icu lar ly  with respect t o  cycl ic  loadings , i s  
required to  place the determination of the hardening coeff ic ient  
on a sounder bas i s ,  

d rectangular 

Notched bar, $ = 2. - The f i r s t  s t ructure  t reated is  the 
ar ,  shown i n  Fig. 3 .  In Ref. 11, a 

p l a s t i c  analysis fo r  cycl ic  loading w a s  performed for  t 
ture on the basis  of a finite-element ideal izat ion cons 
constant-strain t r iangles  e In the present study t h i s  analysis 
w a s  repeated, using the l inear -s t ra in  t r iangles  (LST) The 
f inite-element ideal izat ion of the upper r i g h t  quadrant of the 
notched bar, shown i n  Fig. 4 ,  is  ident ica l  t o  t h a t  used i n  
R e f .  11. Although the LST element can adequately represent the 
s t ruc tu re ' s  behavior with a coarser network of t r iangles ,  t h i s  
ideal izat ion w a s  used here to  provide a more accurate representa- 

e growth of regions of p l a s t i c i t y  i n  the v i c i n i t y  of 
root .  The resu l t ing  stress concentration factor ,  based 

on nominal n e t  section stress, obtained from the current analysis 
i s  2.08 and represents a s l i g h t  improvement (= 3%) over the 

s u l t  previously obtained by using constant-strain tr iangular 
ST) elements, This r e s u l t  compares more closely with the 

value, 2.11, obtained experimentally i n  Ref 26. It should be 
noted, however, t ha t  the magnitude of the computational e f f o r t  to  
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a r r i v e  a t  t h i s  r e s u l t  w a s  substant ia l ly  increased by using the 
LST element, This i s  a consequence of introducing midside nodes 
i n  the development of the tr iangular element, These nodes are a t  
most coincident with only a s ingle  adjacent element, as compared 
with the unlimited number of elements t ha t  can be coincident a t  
vertex nodes, The number of degrees of freedom, and therefore 
the s i z e  of the matrix t o  be inverted to  obtain the [B] and 
[HI matrices (see Appendix B), consequently increase manyfold, 
For example, use of the LST element leads t o  542 unknowns, while 
constant-strain t r iangles  fo r  the same ideal izat ion require only 
144 unknowns, The advantage of the LST element for  t h i s  problem, 
which does not exhibi t  a very high stress concentration factor ,  
i s  therefore minimal e However, fo r  ra ther  s t e e p  stress gradients, 
as represented by the second notched bar considered, the advan- 
tage of t h i s  element becomes more substant ia l .  

A s  indicated i n  Fig. 3, the material used i n  the notched bar 
i s  2024-T3 aluminum a l loy .  
r i a l  f o r  i n i t i a l  t ens i l e  loading d i f f e r  grea t ly  from those ob- 
tained fo r  i n i t i a l  compressive loading. This type o f  material 
behavior poses some d i f f i c u l t i e s  i n  the present analysis,  since 
the Von Mises yield condition assumes an i n i t i a l l y  isotropic  
material, i n  which the y i d d  stresses i n  the normal direct ions 
a r e  not only equal t o  one another but are i n i t i a l l y  equal i n  ten- 
sion and compression. Consequently, i n  order t o  compare present 
r e s u l t s  with the experimental r e s u l t s  of Ref. 26, the i n i t i a l  
yield surface as defined by the Von Mises yield condition w a s  re- 
placed by a surface of s i m i l a r  shape but with the center d i s -  
placed appropriately with respect to  the or ig in  of stress space 
(cf .  Ref e 11, p .  134) e Correspondingly, the hardening proper- 
t ies i n  tension and compression w e r e  t reated as d i f fe ren t .  In 
addition, the hardening properties i n  subseqdent cycles of load- 
ing d i f f e r  from those i n  the f i r s t  cycle, which w a s  taken in to  
account i n  an approximate manner on the basis of limited test  
data (Ref 26) These prop r t ies  are defined by Ramberg- 
parameters associated with q .  (A.24) with E equal to  
1 x 107 lb/in.2 throughout, as follows: 

Stress-s t ra in  curves fo r  t h i s  mate- 

I n i t i a l  Tension 

= 0.53 x 10 5 l b / i n ,  2 
0.7 CT 

n = 37 
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In i t ia 1 Compre s s ion 

5 2 
= 0,45 x 10 l b / i n ,  

0.7 0 

n = 8.1 

Subsequent Tension 

5 2 = 0.53 x 10 lb / in .  0.7 0 

n = 7 . 5  

Subsequent Compression 

5 2 = 0.49 x 10 l b / i n .  0.7 0 

n = 8.1 s 

These parameters w e r e  a l so  used f o r  the other notched bar and the 
sheet with a c i rcu lar  hole. 

Local stress versus s t r a i n  h i s to r i e s  a t  the notch root ,  com- 
puted f o r  a s ingle  cycle of loading f o r  each of several load 
ranges, are presented i n  Fig. 5 and compared with the experi- 
mental data of Ref e 26. The amplitude of load i s  denoted by 
SIIlaX, where S i s  the nominal ne t  section stress across the 
notch root .  The f igure indicates good agreement fo r  both stress 
and s t r a i n  during the f i r s t  half cycle of t ens i l e  loading and an 
overprediction of s t r a i n  a t  the maximum compressive loading, The 
l o c i  of the computed half-cycle and ful l -cycle  res idual  stresses, 
as influenced by the nominal stress amplitude, are shown as 
dashed l i nes  i n  the f igure.  Comparison with experiment is  favor- 
able, with the maximum differences occurring for  the higher maxi- 
mum loading during the f i r s t  half  cycle. 

Figure 6 shows load versus loca l  s t r a i n  a t  the notch root  
for  three cycles of load and a maximum loading range represented 
by SmX of +5Q ks i .  Good correlat ion i s  indicated during the 
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f i r s t  half  cycle of t ens i  e load and f o r  the f i r s t  half  cycle of 
wever, there i s  an overprediction of s 

i n  each cycle, whi minimum loa (Smin - - - 50 ksi)  
be a t t r i bu ted  i n  p a r t  to:: E) the use of larger  elements i n  the 
i n t e r i o r  of the s t ruc ture  a t  some distance from the notch root,  
and 
cycle s t r e s s - s t r a in  behavior 

2) the possibly poor representation of the second and th i rd  

The var ia t ion  of the p l a s t i c  stress-concentration fac tor  
with the nominal stress range AS i s  shown in  Fig. 7. A com- 
parison of r e s u l t s  obtained from experiment, i n  conjunction with 
an empirical equation, Ref. 26, and r e s u l t s  of the present analy- 
s is  i s  shown f o r  monotonically increasing t ens i l e  loads, where 
the fac tor  is  denoted by For reversed loading from tension 
i n  the f i r s t  cycle, the fac tor  i s  denoted by I$. A s  indicated, 
the correlat ion of r e s u l t s  is  qui te  good, with a maximum under- 
prediction of stress concentration fac tor  occurring a t  the maxi- 
mum tens i l e  load, S = 50 ks i .  

The contours of the longitudinal stress (5 are shown i n  Y 
Fig. 8 a t  various stages of the f i r s t  cycle of loading. Fig- 
ure 8a shows the contours a t  the maximum e l a s t i c  load. The 
close spacing of the contours i n  the v i c in i ty  of the notch root  
marks the region of rapid stress var ia t ion  i n  the area of highest 
stress concentration. A t  the maximum load, Smax = 50 ks i ,  
there i s  a red is t r ibu t ion  of stress due to  p l a s t i c  flow, so tha t  
the region of rapid stress var ia t ion  i s  sh i f t ed  along the notch 
boundary, as shown in. Fig. 8b. Although the region-of maximum 
stress i s  larger ,  it is ,  however, s t i l l  located i n  the v i c i n i t y  
of the notch root. Figure 8c shows the f i r s t  half-cycle re- 
sidual stresses. A s  i s  to  be expected, the maximum residual  
stresses a r e  localized i n  the area of the notch root .  Figures 8d 
and 8e denote the stress contours a t  the minimum load and the 
ful l -cycle  res idual  stresses, These f igures  maintain the general 
trend indicated i n  Figs. 8b and 8 c ,  

The propagation of the e l a s t i c -p l a s t i c  boundary is  shown i n  
Fige 9 fo r  a f u l l  cycle of loading t o  It is  of 
i n t e r e s t  here tha t  the region of p l a s t i c i t y  i s  localized i n  the 
v i c i n i t y  of the notch root  during i n i t i a l  t ens i l e  loading but 
encompasses a much wider area during reversed loading, 
boundary for  S = 0 i n  Fig. 9b represents the e l a s t i c -p l a s t i c  
boundary a f t e r  the i n i t i a l  t ens i l e  loading i s  removed, Thus the 
residual  s t resses  are of su f f i c i en t  magnitude to  cause reversed 

S,, = 50 k s i ,  

The 
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p l a s t i c  flow t o  occur during unloadiiag, In addition, t h i s  more 
pronounced growth of the p l a s t i c  zone i n  reversed loading can be 
a t t r i bu ted  to  a Bauschinger e f f e c t  and to  the f a c t  t h a t  the mate- 
r i a l  of the notched bar exhibi ts  a lower yield stress i n  compres- 
sion than i n  i n i t i a l  t ens i l e  loading, 

- In the second notched bar s t rue-  
ture otch root  has a radius of 0 . 3  i n ,  
compared with a t o t a l  bar length of 35 i n , ,  so tha t  Lhe notch 
i s  f a i r l y  sharp, Again the materia1 i s  2024-T3 aluminum a l loy ,  
A quadrant of the finite-element ideal izat ion of the s t ruc ture  i s  
shown i n  Fig. 11, The enlarged region of t h i s  f igure,  represent- 
ing the area near the notch root,  indicates the f i n e  network of 
t r iangles  necessary i n  the high stress gradient region, 
stress concentration factor  .based on ne t  section s t r e s s  obtained 
by using t h i s  ideal izat ion i s  4 9, which i s  i n  exact agreement 
with the experimental r e s u l t  of f 27. An e l a s t i c  analysis  
using constant s t r a i n  t r iangles  s a l so  performed, as a means of 
evaluating the LST element fo r  a s t ruc ture  exhibiting a steep 
stress gradient,  In order to  compare r e s u l t s  on the basis  of the 
s a m e  number of degrees of freedom, the analysis using the con- 
s t an t - s t r a in  t r iangle  is based on the ideal izat ion in  Pig. %I, 
with every t r iangle  replaced by four constant-strain elements e 

The resu l t ing  ideal izat ion contains 576 elements and has 620 de- 
grees of freedom, Figure 12 shows the d is t r ibu t ion  of the longi- 

stress along t e notch n e t  section obtained by using both 

notch, but the LST t r iangle  yields a steeper stress gradient than 
the CST element and a 6 percent higher peak stress a t  the notch 
boundary. It should be noted tha t  the peak stress shown for  the 
CST element i s  the stress i n  the element adjacent to  the notch 
oot, whereas the peak stress fo r  the EST element i s  the nodal 

stress a t  the notch boundary. 
for  cycl ic  loadings represented by an average ne t  section stress 
of +25 ks i .  The Ramberg-Osgood parameters used t o  describe the 
hardening coeff ic ient  i n  t h i s  analysis are the s a m e  as those used 
for  notched bar 1, 
the notch root  fo r  a s ingle  cycle of lo ding i s  shown i n  Fig. 13 
and cornpared with experimental data of ef 27 Although the 
general. shape of the curve i n  Fig. 13, as compared with experi- 
ment, i s  maintained, the stresses i n  the f i r s t  half  cycle of load 
and the minimum s t r a i n  a f t e r  reversed loading are overestimated. 
Figure 14 shows the three-cycle load versus s t r a i n  curve a t  the 
notch root for  the loading range of +25 k s i ,  Good correlat ion 

The 

s. Agreement good a t  points w e l l  removed from the 

A p l a s t i c  analysis w a s  performed 

The loca l  stress versus s t r a i n  h is tory  a t  
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with experimental data w a s  obtained during the f i r s t  half cycle 
of load and fo r  the f i r s t  half-cycle res idual  s t r a i n ,  A s  in the 
case of notched bar I, an overprediction of s t r a i n  i s  i n  evi- 
dence during reversed loading and i n  subsequent cycles of loading, 

The stress concentration fac tors  l$ and Ki are shown i n  
Fig. 15, ood car re la t ion  i s  indicated with the few available 
experimental points,  

Figure 16 shows the d is t r ibu t ion  of the normalized longi- 
tudinal stress along the horizontal  ax is  of symmetry for  three 
values of i n i t i a l  t ens i l e  loading, The localized e f f e c t  of p l a s -  
t i c i t y  i s  evidenced by the re.distrFbution of stress i n  the vicin- 
i t y  of the notch boundary. Since t h i s  s t r e s s  d i s t r ibu t ion  must 
be i n  s t a t i c  equilibrium with the applied load, the v a l i d i t y  of 
the d is t r ibu t ion  shown i n  the figure w a s  checked by measuring the 
area under the curves and comparing i t  with the applied load. In 
each case, equilibrium was exactly sa t i s f i ed .  

The growth of the pl-astic zone f o r  one cycle of load i s  
shown i n  Fig. 17e Again, due t o  the material behavior and the 
prediction of a Bauschiriger e f f ec t ,  w e  see tha t  the region of 
p l a s t i c i t y  i s  la rger  during reversed loading from tension than i n  
the i n i t i a l  loading. Due t o  the rapid var ia t ion of stress, the 
notch a f f e c t s  only a localized region near the root ,  

e - The uniformly 
loaded rectangular sheet with cent ra l  hole i s  shown i n  Pig. 18, 
As seen from the f igure it has the same over-all dimensions as 
the f i r s t  two st ructures  and is  made of the s a m e  material. The 
ideal izat ion used fo r  t h i s  s t ructure ,  shown i n  Fig. 19, i s  iden- 
t i c a l  t o  the one used f o r  notch 11, except fo r  the enlarged re- 
gion shown i n  the f igure ,  

The d is t r ibu t ion  of longitudinal stress normalized with re- 
spect t o  the applied stress is  shown i n  Pig,  2Q, The so l id  curve 
denotes the e l a s t i c  stress d is t r ibu t ion  a t  i n i t i a l  yield and com- 
pares w e l l  with the analysis of Howland, Ref e 32,  The other two 
curves show the stress d is t r ibu t ion  a t  an intermediate and maxi- 
mum t ens i l e  load, S t a t i c  equilibriumwas checked on the basis  of 
these curves and w a s  found to  be s a t i s f i e d ,  

Representations of the d is t r ibu t ion  of stress near 
can be seen i n  the next two figures.  Figure 28 shows the d i s -  
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1 

t r ibut ion of e f fec t ive  stress9 (02 f o2 - CT CI + 3 2  )F9 

X Y Y X  XB 
a t  

i n i t i a l  yield,  A s  is w e l l  known, the rapid var ia t ion of stress 
Q C ~ U ~ S  i n  the v i c i n i t y  of the hole boundary on the ax is  of symme- 
t r y  perpendicular to  the load, 
spacing of contours i n  t h i s  regian, Figure 22 shows the change 
i n  stress contours a t  successive stages i n  the f i r s t  f u l l  cycle 
of loading. The upper l e f t  quadrant shows the contours a t  the 
maximum applied load of The e f f e c t  of p l a s t i c i t y  i s  
evidenced here by the s h i f t  of the region of rapid stress var ia-  

ong the hole boundary and by the wide spacing between %he 
contours of e f fec t ive  stress i n  the region away from the hole. 

This i s  evidenced by the close 

33.4  ks i .  

The upper r i g h t  quadrant shows the residual  e f fec t ive  stress 
a f t e r  the t ens i l e  load i s  removed, Closely spaced contours near 
the hole boundary indicate a rapid decay of res idual  stress with 
distance from the hole,  The lower quadrants show the contours a t  
the minimum load and the ful l -cycle  res idual  e f fec t ive  stresses. 
The pat terns  are s i m i l a r  t o  t ha t  shown f o r  i n i t i a l  tension. 

The propagation of the e l a s t i c - p l a s t i c  boundary i s  shown i n  
Fig. 23 f o r  an i n i t i a l  t ens i l e  loading and for reversed loading, 
As seen i n  the two p r i o r  example s t ructures ,  the d i f fe ren t  yield 
stress i n  tension and compression in  concert with the predicted 
Bauschinger e f f e c t  causes a substant ia l ly  larger  plastic region 
t o  form during reversed loading, 

The next series of figures shows the longitudinal s t r a i n  
versus n e t  section stress during cycl ic  loading, Results a t  the 
hole boundary are shown f a r  three full. cycles of load and a t  
points i n  the in t e r io r  for  one f u l l  cycle. Results from an ex- 
perimental study of the cyclic behavior of t h i s  s t ruc ture  pe r -  
formed a t  the NASA Langley Research Center by J. Crews ,  Ref. 28, 

chosen to  coincide with node o in ts  of the idealized s t ructure .  
Figure 24a shows r e s u l t s  a t  t e hole boundaryo 
i s  obtained with the experimental data, especial ly  during i n i t i a l  
loading and subsequent unloading. However, as i n  the case of the 
notched bars, an overprediction of s t r a i n  i s  evidenced i n  the re- 
versed load p a r t  of 
ures 24b-f 
ident i f ied by t h e i r  ordinates e re correlat ion with the ex- 
perimental data i s  good, 

so shown. The experimental points i n  the i n t e r i o r  w e r e  

Good correlat ion 

e cycle and i n  subsequent cycles. 
esul  ts a t  the in t e r io r  points , which are 

Pig- 
show the 

Figures 25 and 26 show the d is t r ibu t ion  of longitudinal 
s t r a i n  along the horizontal ax is  o f  symmetry for  various levels 
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of i n i t i a l  t ens i l e  load and reversed loading, CorreBatio 
experiment i s  qui te  good, 

The las t  f igure for t h i s  s t ruc ture  (Pig, 27’) shows the 
stress concentration factor  during i n i t i a l  t ens i le  loading. Com- 
parison i s  made with experimental points given by 
Ref, 3 3 ,  obtained by using a s t ruc ture  of s i m i l a r  dimensions and 
s t r e s s - s t r a in  behavior 6) Correlation with experiment i s  again 
seen to  be excel lent ,  

., - The annular disk and a quadrant of i t s  
f i n i  t ion  are shorn i n  ig.  28, The genesis of 
t h i s  problem i s  i n  the determination of e residual  stresses and 
s t r a i n s  around a hole i n  a large sheet in to  which a r i v e t  has 
been squeezed. Since t h i s  problem exhibi ts  symmetry with respect 
t o  the circumferential coordinate, it i s  imperative tha t  a harden- 
ing coeff ic ient  c tha t  i s  invariant with res e c t  t o  coordinate 
ro t a t ion  be used i n  the p l a s t i c i t y  analysis ,  
method a l t e rna t ive  to  tha t  presented i n  Ref. 11 i s  used f o r  t h i s  
problem. It i s  based on ef fec t ive  stress, as discusse 
dix A ,  The material fo r  t h i s  s t ruc ture  i s  2024-T351 a 
alloy, with the Ramberg-Osgood material parameters given as 
E = P07p O O , ~  - - 47e5 ksi ,  and n = 11. 

Figure 29 shows the red is t r ibu t ion  of circumferential stress 
a t  the hole boundary with increasing load leve l .  In t h i s  case, 
the only stress tha t  can change a t  t h i s  point, due to  p l a s t i c i t y  
e f f ec t s ,  i s  the circumferential stress, since equilibrium con- 
s iderat ions require  tha t  the r ad ia l  stress be equal t o  the ap -  
p l ied  in te rna l  pressure. Consequently, a t  the highest load con- 
sidered, the circumferential s t r e s s  i s  seen to be negative, 
Unloading from various load leve ls  i s  also shown, 
here i s  the discrepancy bekween residual  stress obtained from the 
analysis  and the r e s u l t s  obtained by assuming completely e l a s t i c  
unloading (shown by the dashed t can be seen tha t  there 
i s  reversed p l a s t i c  yielding during unloading and t h a t  the pre-  
dicted residual  stresses have about the same value fo r  unloading 
from a l l  t ens i l e  loads considered, 

The r ad ia l  d i s t r ibu t ion  of circumferential and residual  c i r -  
cumferential s t  esses i s  shown i n  Figs, 30 and 31 fo r  a few 
values of loading, P l a s t i c i t y  e f f ec t s  are evidenced by the 
marked decrease i n  stress with increase in load, a decrease asso- 
c ia ted with the propagation of the plastic region in to  the 
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i n t e r io r  f i n t e r e s t  i n  Pigo 31 i s  the f a c t  t ha t  the residual  
stresses, which are compressive near the hole, become increas- 
ingly t ens i l e  i n  the in t e r io r  and near the outer boundary with 
increasing load. A red is t r ibu t ion  of t h i s  kind must Q C C U ~  for 
the circumferential res idual  stresses t o  be i n  s ta t ic  equi- 
1 ibrium 

solution to  the complete problem involving the interact ion 
of the p l a t e  and the s eeze r i v e t  i s  presented i n  R e f .  3 4 ,  
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The p l a s t i c  analysis of s t ructures  with p l a t e  or she l l  com- 
ponents i n  which bending e f f ec t s  may be s igni f icant  has been the 
subject of many investigations (Refs, 10, 12-15, and 35-39)* 
With few exceptions, these investigations have been concerned 
with determining only the "collapse load" of these s t ructures  by 
means of two fundamental theorems of l i m i t  analysis.  These thes- 
r e m s  w e r e  proved f o r  e l a s t i c ,  ideal ly-plast ic  bodies by Drucker, 
Prager, and Greenberg (Ref, 403, and are associated w i t h  a def i -  
n i t i on  of the collapse load as tha t  value of load a t  which a 
s t ruc ture  undergoes a rb i t r a ry  p l a s t i c  deformations and i s  no 
longer serviceable 

Approximate solutions for the collapse load a r e  based mainly 
on the kinematic approach, which permits the estimation of an 
upper bound on the load-carrying capacity of the s t ructure .  In 
t h i s  approach, a displacement pat tern associated with a f a i l u r e  
mechanism of the plate  i s  assumed. The work done by the external 
loads i n  t h i s  displacement i s  equated to  the energy diss ipat ion 
within the plate,  and a corresponding collapse load i s  determined, 
The assumed collapse mechanism i s  subject to  various conditions 
and i s  chosen on a t r i a l  basis  i n  such a way as to  seek a minimum 
for the upper bound values obtained for  the collapse., 

L i m i t  analysis  techniques have been applied extensively t o  
determine the load-carrying capacit ies of a var ie ty  of plates  on 
the basis  of various yield conditions, Although these techniques 
provide valuable information concerning the collapse patterns and 
collapse loadings of various s t ructures ,  a complete solution tha t  
can trace the load-deflection h is tory  i n  the plast ic  range i s  
frequently desirable and necessary. For instance, the s t ruc ture  
may become unusable because of the development of excessive de- 
formation before the theoret ical  collapse load i s  reached, 

Several authors have considered problems of p l a s t i c  bending 
i n  which the e n t i r e  load-deformation h is tory  is  desired. The 
s t ructures  considered include beams (Refs, E5 and 3 6 ) ,  p l a t e s  
(Refs, 12, 13, 15, 35,  and 37-39) ,  and she l l s  (Ref. 10) .  Solu- 
t ion techniques range from an exact solution of the governing 
d i f f e r e n t i a l  equation (Ref 3 6 )  and a f i n i t e  difference approach. 
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In several  of these previous investigations (Refs, 37-39) 
i t  w a s  assumed tha t  a t  any point on the plate the e n t i r e  thick- 
ness i s  e i the r  f u l l y  e l a s t i c  o r  f u l l y  p l a s t i c -  This assumption 
grea t ly  f a c i l i t a t e s  the solution of the problem and i s  prac- 
t i c a l l y  f u l f i l l e d  i n  the case of a plate  of sandwich construction 
i n  which the core does not possess any bending s t i f f n e s s .  For a 

the curve expressing the relat ionship between bending moment and 
curvature be approximated by two s t r a igh t  l i nes  corresponding to  
the f u l l y  e l a s t i c  and f u l l y  p l a s t i c  states, For many s t ruc tu ra l  
materials t h i s  idealized moment-curvature re la t ionship represents 
a very crude approximation of the actual  one, and i s  therefore 
un rea l i s t i c .  Another approximation tha t  has been used involves 
the replacement of the ac tua l  plate  by a layered model i n  which 
individual layers are e i t h e r  f u l l y  e l a s t i c  o r  f u l l y  plastic,  

ate, however, t h i s  simplifying assumption requires tha t  

The p l a s t i c  bending analysis discussed here (Ref. 15) makes 
use of the l i nea r  matrix equation, Eq. (229, consti tuting the 
displacement method i n  conjunction with the predictor procedure. 
This governing matrix equation relates the applied loading to  the 
nodal displacements and i n i t i a  s t r a ins .  The use of the i n i t i a l  
s t r a i n  concept i n  t h i s  analysis requires the development of ap- 
propriate matrix re la t ions  based on assumptions concerning the 
d is t r ibu t ion  of both displacement and i n i t i a l  (plast ic)  s t r a i n  
within a f i n i t e  element. 

For the case of membrane stress states, as has been seen, 
the p l a s t i c  s t r a i n s  are assiimed to  vary i n  a prescribed manner i n  
the plane of the element. For out-of-plane bending, an assump- 
t ion must be made concerning the d is t r ibu t ion  of p l a s t i c  s t r a i n  
through the thickness as w e l l  as i n  the middle surface of the 
element. Specifically,  the present ana ys i s  assumes the p l a s t i c  
s t r a ins  to  vary l i nea r ly  along the edge of a f i n i t e  element be- 
tween adjacent nodes, and i n  addition assumes a l inear  v a r i  
of p l a s t i c  s t r a i n s  from the upper o lower surface of the e 

cross section of the element. These assumption require the de- 
termination of the posit ion of an e l a s t i c -p l a s t i c  boundary i n  
each element o the basis  of assumpt ons Concerning i t s  shape. 

a s t i c -p l a s t i c  boundary (or boundaries) ocated within the 

l y s i s  here presented u t i  izes  the concept of a f i n i t e  
ich there is  a progress ve development of a plastic 

egion, instead of the layered approach o r  a sandwich idealiza- 
t ion of the ac tua l  so l id  plate. To provide a be t t e r  understand- 
ing of the implementation of these assumptions, t he i r  application 
to  three bending elements w i l l  be discussed i n  d e t a i  
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lement of Rectangular oss Section 

A typical beam element, f o r  ich pure bending has been as- 
sumed, i s  shown i n  Pige 32. The function f o r  the displacement i n  
the z-direction i s  assumed to  be of cubic order i n  the coordi- 
nate x, and i s  wr i t ten  i n  t e r m s  of the generalized nodal dis-  
placements as 

= (1 
2 

- 3 K + 2  
a2 

2) 
3 wj a '  

2 x 3 3 x 2 
X + (x - - f ~ ) w , x i  + (% - -3-)w,xj 9 l a  a 

In choosing a displacement function, it i s  important to  inc 
fundamental s t ra ined states and a l l  r i g i d  body t e r m s ,  

n ( 4 3 )  sat i  ies these requirements f o r  a beam element,. 
the case of a iform bending s t i f fnes s ,  I, allows f o r  a con- 
s t an t  shear l o  and l i nea r ly  varying mome t along the length of 
the element. The p l a s t i c  s t r a i n  d is t r ibu t ion  i s  assumed to  vary 
l i nea r ly  i n  the x-direction from i t s  value a t  e upper (or 

i t s  value a t  the upper (or lower) surf ce a t  node j, repre- 
sented as  EO^^ This assumed d is t r ibu t ion  is  wri t ten as 

lower) surface a t  node i, represented i n  Pigs  as coir t o  

[ E O i  (1 - ;) f E ( 4 4 )  

- 
where z represents the depth of the e las t i  -p las t ic  boundary, 
A l i nea r  function f o  the p l a s t i c  s t r a i n  d is t r ibu t ion  w a s  chosen 
because it  represent the s imples t  form t h a t  can, by using suc- 
cessively f i n e r  idea izat ions of th  e , approximate 
more complex ac tua l  i s  tr ibu t ion n, as seen from 
Eq.  ( 4 4 1 ,  i t  i s  assumed tha t  a t  a node the p l a s t i c  s t r a i n  var ies  
l i nea r ly  from i ts  value a t  the upper or  lower surface to  zero a t  
an e l a s t i c -p l a s t i c  boundary located w i  e cross section, 

The depth of the e l a s t i c -p l a s t i c  boundaries, ich propagate 
e upper and lower s measured from the neutral  

ax is  f o r  pure bending, as i g D  3 2 ,  In general, the 
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depth of these boundaries cannot be d i r ec t ly  re la ted  to  the load, 
Hence the value of must be determined from t-he t o t a l  s t r a i n  
d is t r ibu t ion ,  which i s  assumed to  vary l i nea r ly  through the 
thickness i n  accordance with Kirchoff9s hypothesis, The func- 
t ional  form describing the shape of the e las t ic -p las  t i c  boundary 
i s  assumed to  be a l inear  function of the coordinate x and may 
be wr i t ten  as 

- I 

where zi and z j  represent the depth of the e l a s t i c -p l a s t i c  
boundary at nodes i and j, respectively,  The choice of a 
l i nea r  function to  describe the shape of the e l a s t i c -p l a s t i c  
boundary i s  made on the same basis  as the choice of a l i nea r  dis-  
t r ibu t ion  fo r  p l a s t i c  s t r a i n ;  i .e,  , the l inear  function repre- 
sents the s i m p l e s t  form tha t  can approximate the more complex 
actual  shape with successively f i n e r  ideal izat ions of the s t ruc-  
ture e the basis  of the preceding assumptions, the e l a s t i c -  
p l a s t i c  boundary consists of a surface i n  the i n t e r i o r  of the 
element t ha t  extends over the e n t i r e  area of the element and in- 
t e r sec t s  the edges along s t r a i g h t  l i n e s  joining nodes, as i l l u s -  
t ra ted  i n  Fige 32, In addition, these assumptions eliminate the 
necessity of determining an e l a s t i c -p l a s t i c  boundary on the faces 
of the element between nodes, but s t i l l  re ire locating such a 
boundary through the thickness 

The present assumptions have been fur ther  extended to  in- 
clude the e f f ec t s  of bending i n  combination with a membrane 
stress state, A s  seen. i n  Pig. 33, t h i s  extension necessi ta tes  
the separate determination of the posit ions of the two e l a s t i c -  
p l a s t i c  boundaries r e l a t i v e  t o  both the upper and lower surface, 
The functional representation o-f the p l a s t i c  s t r a i n  d is t r ibu t ion  
and the representation of the elas tic-plas t i c  boundary are taken 
to  be s i m i l a r  t o  E q s ,  (44) and (451, but now wr i t ten  separately 
f o r  the upper and lower surfaces, A second matrix, i n  addition 
to  the usual s t i f f n e s s  matrix, termed the i n i t i a  stress s t i f f -  
ness matrix (discussed i n  Section 21, is  introduced t o  account 
fo r  the e f f ec t s  of the membrane load on the bending s t i f f n e s s ,  
This problem a l so  requires the i n t r  duction of a second displace- 
ment component, u, acting i n  the ax ia l  direct ion,  

u$x) = (1 - $)Ui 4- (")u 0 

Q j  
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It should be noted tha t ,  although the functional form of the 
p l a s t i c  s t r a i n  d is t r ibu t ion ,  as shown i n  E q .  (441, does assume 
the existence of a neutral  axis  located within the cross section 
of the beam element, the present analysis i s  capable of consider- 
ing p l a s t i c  sections i n  which the neutral  ax is  is  not located 
within f ie thickness of the beam, f e e .  , the s t r a ins  a t  the upper 
and lower surfaces are of the s a m e  sign. This s i tua t ion  occurs 
when the membrane stresses are larger  than the bending stresses, 
The treatment of t h i s  s i tua t ion  i s  accomplished by modifying the 
functional form of the p l a s t i c  s t r a i n  d is t r ibu t ion  given i n  
E q .  (44) e This modification is  presented i n  Appendix D e  

The present method has a l so  been extended to  treat the more 
complex problem of the p l a s t i c  bending of a plate.  

Rectangular Bending Element 

A typical rectangular plate element i s  shown i n  Fig. 3 4 .  
The displacement function chosen i s  the one or ig ina l ly  used by 
Bogner, Fox, and Schmit (Ref. 4 1 ) ,  and i s  i n  t e r m s  of products 
of f i r s t  order rmitian polynomials e 

2 2  

where 4 = x/a, q = y/b, a is  the length of the rectangular 
element i n  the x-direction, and b i s  the length in  the 
y-direction, and where 

(l)(V> = 2v3 - 3v 2 + 1 01 

3 2 (l>(V) = -2v 4- 3v 02 

3 2 Hi;) (v) = v - v  
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and the quant i t ies  w i j  , a w p x i j  bw9yij and abw,,yij a r e  
nodal generalized displacements a 

las t ic  s t r a i n  alee assumed t o  vary as 
products of zer  rmitian polynomials i n  the plane of the 
element and l i nea r ly  through the cross section from the i r  values 
a t  the upper (or lower) surface to  zero a t  the e l a s t i c -p l a s t i c  
boundary. The functional representation f o r  t h i s  d i s t r ibu t ion  
may be wr i t ten  as 

where 

(*)(V> = 1 - v 01 

(VI = v 02 

t i s  the half-thickness of the element, 

z represents the ordinate of the e l a s t i c -p l a s t i c  
- 

boundary, and 

are the nodal values of the p l a s t i c  s t r a i n ,  ij E 

The function defining the e l a s t i c -p l a s t i c  boundary i s  a l so  as- 
sumed to  be i n  the form of products of zero order 
nomials as shown i n  Pig. 34 and wr i t ten  here i n  the following 
form: 

rmitian poly- 

2 2  

Pq 

where z i j  represents the depth of the e l a s t i c -p l a s t i c  boundary 
through the thickness a t  node ij. e value of the depth, which 
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must be determined a t  each of the f the rectangular 
element, i s  CQ uted from the t o t a l  s t r a i n s  by means of a proce- 
dure outlined i n  Appendix 

The forego assumptions associa p l a s t i c  s t r a i n  
d is t r ibu t ion  an e representation of 
boundary ensure compatibility of these quant i t ies  along element 
boundaries 

e m  of combined bending and membrane loading re- 
ires the introduction of assumptions f o r  the in-plane displace- 

ment components, u and v, i the x and y directions,  
respectively,  For the rectangular element these displacements 
were chosen as products of zero order Hermitian polynomials, 

2 2  

In addition, as previously element, the prob- 
l e m  of combined loading re s ta tes of s tress 
and s t r a i n  on bo the upper and lower surface, i s  extension 
a l so  requires a para te determination ion of the two 
d i f f e ren t  e l a s t i c -p l a s t i c  boundaries, erefore, the functional 
representat io  of the p l a s t i c  s t r a i n  d i  and the repre- 
sentation of e e l a s t i c -p l a s t i c  boundaries are taken t o  be of 
s i m i l a r  form s, (49) and (511, written for  both the upper 
and lower surfaceo 

Triangular 

A typical tr iangular bending element i s  s 
The displacement funs ion chosen for  the lateral displacement i s  
the one presented i n  f s ,  42 through 44 and i s  a f u l l  21-term 
quint ic  PO omial i n  terms of unknown coeff ic ients  ai9 as 
follows: 
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The components of p l a s t i c  s t r a i n  are assumed t o  vary l i n -  
ea r ly  i n  the plane of the element, 
be wr i t ten  as 

This l inear  d i s t r ibu t ion  can 

where c u i  represents the area coordinates discussed i n  d e t a i l  i n  
Appendix P, and ~i 
i e  

i s  the value of the p l a s t i c  s t r a i n  a t  node 

The ordinate of the e l a s t i c -p l a s t i c  boundary is  a l so  assumed 
to  vary l i nea r ly  i n  the plane of the element, and may be wr i t ten  
as 

3 

i=l 

A l inear  var ia t ion  w a s  chosen for the in-plane displacement 
components, u and v, i n  the x and y directions,  respee- 
t ively,  for  the tr iangular element (d These displacement compo- 
nents may be wr i t ten  i n  t e r m s  OE the area coordinates 
following form, 

ai i n  the 

3 

3 
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Once again, the extension fo r  the combined loading case requires 
writ ing the functional representation of the p l a s t i c  s t r a i n  dis-  
t r ibu t ion  and the e l a s t i c -p l a s t i c  boundary i n  a form s i m i l a r  t o  
E q s ,  (54) and (55) respectively,  fo r  the upper and lower por- 
t ions of the element separatelye 

The above assumptions are made i n  the development of the 
governing l inear  matrix r e l a t i o n  as formulated to  include the e f -  
f e c t s  of i n i t i a l  s t r a i n ,  and spec$fieal-lg a f f e c t  the element hi- 
t i a l  s t r a i n  s t i f f n e s s  matrix, [k 3 ,  of EqD (15). I n i t i a l  
s t r a i n  s t i f f n e s s  matrices fo r  the beam element, the rectangular 
plate  element, and the tr iangular plate  element are given i n  
Appendices D, 6 ,  and H, respectively,  The i n i t i a l  stress s t i f f -  
ness matrix for  the beam eEemenL i s  given i n  Ref, 45, for: the 
rectangular plate element i n  Ref, 11, and for  the tr iangular 
plate  element i n  Appendix I, 

11.. the expression for  the i n i t i a l  s t r a i n  s t i f f n e s s  matrix, 
which i s  dependent on. the assumptions coiacerniag the d is t r ibu t ion  
of both t o t a l  and p l a s t i c  s t r a ins ,  the quantity Vp is  the vol- 
ume of the p l a s t i c  region i n  each f i n i t e  element as determined by 
the representation of the e l a s t i c - p l a s t i c  boundarye Conse- 
quently, the elements of the i n i t i a l  s t r a i n  s t i f fnes s  matrix are 
a function of,  among other quant i t ies ,  the depth of the e l a s t i c -  
p l a s t i c  boundary a t  each node and must therefore be recompiJted a t  
each s t ep  i n  the incremental loading process, 

The use of a predictor procedure solution technique i s  
necessary i n  these problems, because the depth of the e l a s t i c -  
p l a s t i c  boundary (and the current value of p l a s t i c  s t r a in )  a t  
those nodes of the s t ruc ture  tha t  are i n  the p l a s t i c  range cannot 
be expressed e x p l i c i t l y  i n  t e r m s  of t o t a l  s t r a i n  with su f f i c i en t  
ease to make feas ib le  the application of the d i r ec t  subst i tut ion 
procedure, The posi t ion of the e l a s t i c -p l a s t i c  boundary i s  de- 
termined at the end of each l.sad increment, and i s  assumed to  re- 
main fixed during the next increment, 

The treatment of combined bending and stretching i n  the p l a s -  
t i c  range requeres some additional development, Two types of 
problems may be encountered, In one, the membrane stresses are 
generated as a consequence of the changing geometry of the struc- 
tu re ,  
the s t ruc ture  as i t  deforms mst be accounted for  i n  the e l a s t i c  
and p l a s t i c  ranges, Application of the methods t~ t h i s  ty-pe of 
problem will be discussed i n  Section 5 8  

The e f f ec t s  of the changing geometry on the response of 

The second type of 
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em, considered now9 is  l imited to  cases i n  which a membrane 
load i s  applied to  the s t ruc ture  and the e f f ec t s  of changing 
geometry are neglected 

Although the analysis  fo r  combined bending and membrane be- 
havior i s  of su f f i c i en t  general i ty  to  pe rmi t  the treafment of any 
combination of membrane and bending loading, the applications 
presented here consis t  only of those cases i n  which the applied 
membrane load is  r e s t r i c t e d  to  values less than tha t  necessary t o  
i n i t i a t e  p l a s t i c  deformation. The lateral loads are applied i n  
f i n i t e  increments while the membrane load is  held constant, 

As previously s ta ted,  the solution of these probEems re- 
quires t ha t  an additional s t i f f n e s s  matrix, termed the i n i t i a l  
stress s t i f f n e s s  matrix, be introduced to  account f o r  the e f f e c t s  
of the membrane load on the bending s t i f f n e s s ,  
t h i s  matrix are functions of,  among other quant i t ies ,  the mem- 
brane state of stress t h a t  e x i s t s  i n  the elements p r io r  to  the 
application of additional loading i n  the next s tep .  
formation causes a red is t r ibu t ion  of both bending and membrane 
states of stress exis t ing i n  the s t ructure .  Thus, with the ex- 
ception of s t a t i c a l l y  determinate problems where the membrane 
stress resu l tan ts  remain constant, the elements of the i n i t i a l  
stress s t i f f n e s s  matrix change, i n  general9 with increasing loads 
because of the changes i n  the values of the membrane stress re- 
su l  tan ts  o 

The elements of 

Plast ic  de- 

In addition to  modification of the i n i t i a l  stress s t i f f n e s s  
matrix, the combined loading problem a l so  requires the determina- 
t ion  of the states of stress and s t r a i n  (elastic and plastic) a t  
the upper and lower surface separately, a t  the nodes of each 
f i n i t e  element Consequently, these considerations require tha t  
the e f fec t ive  p l a s t i c  load vector of Eq. (2Qb) be wr i t ten  i n  the 
f ormp 

i i 

0 (57) 

5 



e values of p l a s t i c  s t ra i  
faceJ respective 

Thus with a t ten t ion  restricte a t  plate elements 
i n  the presence (ai) E ~ J T  be 

f o r  an indiv 

I ! [kml 

i 

e e l a s t i c  s t i f f n e s s  matrix, [b], of Eq. (21) now in- 
e usual bending s t i f f n e s s  matrix, [k$I)], 

i n i t i a l  stres i f fness  m a t r  , and [km], the membrane 
ffness  matrix. e displaceme vector [Ad,) is now sepa- 

ra ted  in to  [Atlob) and [Adom}, the increments of the general- 
acements associated with'bending and membra 
ectiveby; and the load vector [Ap,) i s  se 

load, respective ese def ini t ions,  (58) can be ex- 
ganded and wr i t ten  as two matrix equations, 

[Apob] and (Ap,,), e increments of lateral load and in-plane 
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ations may be solved separately to de 
eneralized dfsplaeemnt associated wf 

defomtioaas 0 The s o l u t i  
s t r a in ,  stressjs and plasti  

oundaries a t  
ial s t r a i n  § 

stress s t i f f n e s s  matrix to  be used i n  the nex 

s ,  (59%) and (59b) are solved inde- 

p l a s t i c  load vec 
the combfnati 

stresses. T mbrane s t r a i n s  a f f e  

through the r ed i s t r ibu t io  
modifies the elements of ss s t i f f n e s s  matrix. 

n order t e a  develop a me 
cycl ic  behavior o 

e n t  i n  plate s t ruc tures ,  
d steffec t i ve  
e kept as cons 

p l a s t i c i t y  theory and finite-element and kinematic s t r a i n  assump- 
t ions e 

Various possible e l a s t i c ,  ideal ly-plast ic  stress (or s t r a in )  
states fo r  a beam complete cycle Of pure ending are 

e correspondi 
a represe cycl ic  stress- 
ning material are indicated in  

e merely meant to 

posi.tions, 
the load cycles and natu 

-strain cu 
and stress ( e l a s t i c  s t r a in )  d i s t r ibu t ion  f o r  
during initial loading is indicated i n  Pige 
tions are based upon previous kinematic and 
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IS SI and p l a s t i c  s t r a i n  assumptions e rom point a , the s t ruc ture  is  
assumed to  unload elasticallyg The stress dis t r ibu t ion  and 
plast ic  s t r a i n  d is t r ibu t ion  a t  incipient p l a s t i c  deformation on 
reversed loading are shown in  F iga  36b, Note that the seress 
d is t r ibu t ion  i s  bilinear while the cumulative p l a s t i c  s t r a i n  dis- 
tribution is  l i nea r  o ote  a l so  t h a t  t l a s t i c  range fo r  un- 
loading and reverse ding is twice i n i t i a l  elas 

is s i tua t ion  may not be true fo r  
d i s t r ibu t ion  o stresses due to  displace- 

ment of the stress state along yield surface, A s  yielding 
during reversed loadi  g progresses, the e l a s t i c  s t r a i n  d is t r ibu-  
t ion,  t o t a l  pl .astic s a h  d is t r ibu t ion ,  and p l a s t i c  s t r a i n  gen- 

a ted  during reversed loading are shown i n  Pigs 36c .  Althas 
e cumulative plastic s t r a i n  has a b i l inear  dis t r ibut ion,  

p l a s t i c  s t r a i n  developed dur 
i s  l i n e a r a  In t h i s  f igure? current e l a s t i c - p l a s t i  
has not yet propagated through the depth as f a r  as the 
boundary nor i s  the slope of the f i c t i t i o u s  e l a s t i c  d i  
(line 1-2 i n  Figs 36c) the s a m e  as tha t  fo r  loading, 
titious elastic dis t r ibueion referred to here is the s 
t r ibut ion tha t  would e x i s t  a t  the cross section i f  p l a s t i c  de- 
formation did no occur during the. current half  -cycle 
because of the c ange i n  slope of the f i c t i t i o u s  elastic 
t r ibut ion,  the locat ion of the e l a s t i c -p l a s t i c  boundary throug 
the depth cannot be calculated by 

this phase of the cycl ic  loading 

ing the t o t a l  s t r a i n  dis- 
n, as outlined in Appendix , and a d i f fe ren t  meth 
oped, In th i s  connection, t is  in te res t ing  to no 

e new slope of the ibution in te rsec ts  Ehe 
x i s  not a t  t r a i n  loca t io  

one a s  measured 
cumulative p l a s t i c  s t r a i n  

as t ic  s t r a i n  gen- 

tributiaan e 

I f ,  instead, one unloads d reloads from the s i tua t ion  de- - 
pitted i n  F i g d  he current value of z i s  greater  than 
previous one) 6 e ,  f ,  g, and Jrsi indicate the t o t a l  p l  
t i c  and current cycle p l a s t i c  s t r a i n  ing a t  incipient  
yielding, fur ther  yielding, and grow current p l a s t i  
region beyond both previous regions, 
proceeded f r o m  ehe point i l l u s t r a t e d  in Fig, 36d9 

If  unloading and reloading 
it  would f o l -  
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low the stages shorn tn 
* In all cases 

t i c  serain or  the p 
cycling phase Ls Pinear, 
behavior for  an arbLtrar 

situation nei ther  the e 
strain i s  l i nea r ,  Su 

t i c - p l a s t i c  bound- 
formation of 

he generalinatio 
i s  depicted i 
e The f o l  

beam problem: 

i n i t i a l  yield 
e second invaria stress tensor 

omputed, using 
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p = s  '1) ~ (1) 
e 'yield, and i s  a measure of s t r a i n  hardening; 

- (1) z * 
8 i s  the neutral  ax is  intercept  of the slope - (1) B =  

of the f i c t i t i o u s  e f fec t ive  e as t ic  stress d i s t r i b u t i o  
during reversed loading, and is  seen t o  be based n 
assumption of l i n e a r i t y  of the d is t r ibu t ion  of Ssl  
the plastic range; 

t - z  

e 

stress l o s t  through p l a s t i c  behavior upon loading; 

computed, using the i g  -01 = J ( D e s )  , with 0 
'yield 2 1J 
stresses (derived from e l a s t i c  s t r a ins )  at i n i t i a l  yield 
during unloading or  reversed loading; 

Sf = 1/ J (use) , with oij computed, using the indi-  

. i 0 e s 9  T (1) vidual components of e l a s t i c  s t r a in ,  e - E i j  
i t  i s  the e f f ec t ive  stress tha t  would e x i s t  i f  the plate 
did not  go p l a s t i c  during reversed loading; ' 

2'" 
p l a s t i c  behavior during reversed loading, 

2 13 

i j  ' 

may be considered as ef fec t ive  stress l o s t  

ence f o r  loading, w e  have -'I) z calculated by the method 
ndix E. For reversed loading, i s  determined from 

s i m i l a r  t r iangles ,  as follows, 

> ,('), and i s  determined from E (E.9) of Appen- 
-(2) < .la) ~ A t  - '2) when z 

when z 

d i x  E,  With Go replaced by Syield9 
- 
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(2) and Syield9 = t, since s = - 0 1  i n i t i a l  reversed yielding, z e 
its value then decreases toward zero as S, increases, since a l l  
other quant i t ies  remain fixed, 

In Fig. 37, the quantity S, 0-1 i c e e ,  the actual  e f fec t ive  
scressy i s  shown to vary l i nea r ly  from the top (bottom) surface 
to  the e l a s t i c -p l a s t i c  boundary. This i s  not exactly true, even 
with the l inear  p l a s t i c  s t r a i n  assumptions made here, This var i -  
a t i o n  is  almost's linear (the square root  of a quadratic f m c -  
tion) however, Stanton (Ref 18) , who makes no assumption on 
p l a s t i c  s t r a i n  or e f fec t ive  stress d is t r ibu t ion  through the 
thiglkness, shows r e s u l t s  fo r  t h in  plates that indicate tha t  t he i r  
departure from l i n e a r i t y  is  indeed small, This additional as- 

11 

- 
QJ 

sumption w a s  needed here to  determine B and - z C2) when 

Z > z " ) ~  me v a l i d i t y  of t h i s  assumption i s  supported, i n  
some measure, by the continuous var ia t ion  of -'2) z 
t rans i t ion  takes place from one method of calculation, E q ,  (601, 
to  the other, E q ,  (E.9) (see Fig. 36d) 

when the 

The cycling procedure fo r  8ne f u l 1  cycle consis ts  of loading 

Y 

up t o  a prescribed maximum value. The p l a t e  i s  then unloaded 
e l a s t i c a l l y  and the new c r i t i c a l  load for  reversed yielding, 
i s  calculated by the method described i n  Appendix E of Ref e E l .  

p>k 

ere, however, 

where (do) are the displacements fo r  a u n i t  load and (OR) are 
the residual  stresses, TIXIS f3] in ~ q ,  ( ~ ~ 3 1 %  QF Appendix E of 
R e f ,  11 equals [E][W]{2,} in the current analysis.  In additism, 
the value of ( OR] i s  determined i n  the following manner. When 
the maximum desired load is  reached, the f i n a l  value of the 
"effect ive p l a s t i c  load," (Qf] ,  i s  stored and remains on the 
s t rucmre .  The residual  displacements, stressesg e t c ,  , are cal-  
culated i n  a manner s i m i l a r  to  tha t  presented i n  Appendix G of 

se t t ing  {P} = 0 i n  E q .  (22b). 
8 F i r s t ,  e residual displacements are calculated by 
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where 
tained, 

[Qf> = [K:][eof) a Now the residual  t o t a l  s t r a i n s  are ob- 

and the residual  e l a s t i c  s t r a i n s  are calculated, 

Final ly ,  the residual  stresses are 

The residual  stresses and s t r a ins ,  as computed by means of 
the above procedures, are va l id  a t  the end of any cycle of load- 
ing only i f  the zero load state is  reached without the occurrence 
of reversed yielding. Where t h i s  i s  not the case, incremental 
p l a s t i c i t y  calculations must be performed from the point of i n i -  
t i a t i o n  of reversed yielding, as determined by the procedure out- 
l ined i n  Appendix E of Ref. 11, u n t i l  the zero load state i s  
reached. A t  t h i s  point the above re la t ions  fo r  res idual  stresses 
and s t r a i n s  can again be used. 

Upon reversed yielding the p l a s t i c  load vector generated i n  
t h i s  portion of the cycle i s  added to  t h a t  obtained a t  the end of 
the loading cycle, Thus, although the accumulated p l a s t i c  s t r a i n  
d i s t r ibu t ion  is  not hear ,  i t  i s  the sum of two l inear  portions. 
This procedure cont i  es u n t i l  the load i s  reversed, o 
new z [ f e e D ,  -(2) z as previously defined] i s  sma Eer than the 
previous z ,  or  the la t ter  case, the p l a s t i c  load i s  calculated 
by using only e cumulative p l a s t i c  s t r a i n ,  since t h i s  i s  now 
l inea r  (see Pig. 36d), even hough the current p a s t i c  s t r a i n  
d is t r ibu t ion  i s  not ,  For subsequent loading the to ta  
"loads" obtained during both loading and reversed loading are 
saved and remain on the s t ruc ture ,  The new (cr i t ica l  load and 
residuals  are calculated from the sum of these loads, 

- 
- 
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Results 

The goals associated with the case of bending, alone o r  i n  
combination with membrane loads, include ver i f ica t ion  of the as- 
sumptions employed i n  the analysis (p l a s t i c  s t r a i n  d is t r ibu t ion  
through the thickness location and shape ~f the elast ic-plas  t i c  
boundary within the element, e tc . )  and the f e a s i b i l i t y  of using 
the developed methods as ana ly t ica l  tools  for  p l a s t i c  bending 
problems, To t h i s  end extensive computations were carr ied out 
for  beams and plates under pure bending o r  combined bending and 
membrane loads. 
l ished data, where such are ava i lab leo  

ur solutions are compared with previously pub- 

A discussion and tabulation of computation t i m e s  fo r  several 
representative problems are presented i n  Appendix K, 

e - To demonstrate the f e a s i b i l i t y  of the p l a s t i c  
l y s i s ,  the method i s  applied i n i t i a l l y  to  two beamsg 

a simply supported and a cantilever beam. Results fo r  these 
s t ructures  from an exact solution of the governing d i f f e r e n t i a l  
equation assuming e l a s t i c ,  idea l ly-p las t ic  material behavior are. 
avai lable  for  comparison, A s  a consequenc of assuming e l a s t i c ,  
ideal ly-plast ic  behavior and of the f a c t  a t  both s t ructures  are 
s t a t i c a l l y  determinate, an analycic expression can be wri t ten 
tha t  relates the depth of t h e  e l a s t i c -p l a s t i c  boundary t o  the 
applied load. The f i n i t e  element analysis is  applied t o  the beam 
structures  with the use of t h i s  re la t ionship,  thus providing a 
means of determining the v a l i d i t y  of assumptions made i n  choosing 
such quant i t ies  as the displacement function, the form for  the 
p l a s t i c  s t r a i n  d is t r ibu t ion ,  and the representation of the 
e l a s t i c -p l a s t i c  boundary. 

Figure 38a shows a nondimensionalized load versus cent ra l  
deflection curve fo r  a uniformly loaded simply supported beam, 
S i x  elements w e r e  used i n  the ideal izat ion of one-half 05 the 
beam. In t h i s  f igure,  wo i s  the center deflection, wo i s  the 
center deflection a t  the maximum load for  which the beam i s  en- 
t i r e l y  e l a s t i c ,  and p represents the nondimensional load 
parameter, 

58 



where p i s  the applied load in tens i ty  and pg = 4bao. The re- 
s u l t s  obtained from the f i n i t e  element analysis compare qui te  
favorably with the corresponding r e s u l t s  from the exact sobution 
(Ref 36) as shown in Pige %a, me collapse Isad determined 
from the near v e r t i c a l  s lope of the load-deflection curve i s  ap- 
proximately 3 percent higher ehan the exact collapse load, which 

curs a t  a value of p -m 1, 

The propagation of ehe e l  oundary through the 
thickness and i n  the plane of shown i n  Fig, 38b, 
From t h i s  f igure i t  can be see h the depth 0% the 
boundary a t  plastic nodes is  exact, the assumption associated 
with i t s  shape between nodes ( i s eeep  l inear )  may lead t o  irregu- 
lar i t ies  i n  i t s  representation, as evidenced a t  the load values 
of p = 1,OO and p = E,Q3, These i r r e g u l a r i t i e s  indicate tha t  
the actual  boundary lies between the nodes, 
6x/a = 4,  
introduced by the assumption of a l inear  boundary between nodes 
can be reduced by using more elements i n  the ideal izat ion of the 
beam. Also noteworthy i n  Figs  38b i s  the development of a f u l l y  
p l a s t i c  cross section a t  the center of the beam a t  a load corre- 
sponding to  p = 1. In a continuum analysis,  the development of 
t h i s  f u l l y  plastic cross section i s  su f f i c i en t  to cause collapse 
of the s t ruc ture ,  In  the f i n i t e  element analysis,  however9 c01- 
lapse i s  not indicated u n t i l  both cross se t ions of the element 
containing the center of the beam become f u l l y  p l a s t i c ,  

6x/a = 3 and 
on the upper and lower surface of the beam. The e r ro r  

e s u l t s  in the form of a nondimensionalized load versus t i p -  
e fo r  a uniformly loaded cantilever beam are shown deflection cu 

i n  Figs  39aa Eastic, ideal ly-plast ic  material behavior w a s  as- 
sumed, Comparison with r e s u l t s  from an exact solution, shown as 
the so l id  curve in. the figure,  indicates good correlat ion up to  
the collapse load, For  t h i s  problem, as f o r  the simply supported 
beamg the depth of the e l a s t i c  las t ic  boundary can be d i r ec t ly  
r e l a t ed  to  the applied load, ce again, t h i s  re la t ionship w a s  
used to  obtain the r e s u l t s  shown i n   he f igure ,  

The propagation of the e l a s t i e -p l a s t i c  boundary through the 
cross sect ion and i n  the plane 0% the elements i s  shown i n  
Figo 39b. A s  indicated i n  the figure,  the development of the 
p l a s t i c  region is  much more localized fo r  t h i s  s t ruc ture  than for  
the simply supported beam, Consistent with a continuum approach, 
collapse of t h i s  s t ruc ture  i s  indicated i n  the f i n i t e  element 
analysis by the development of one fully p l a s t i c  cross section a t  
the root  of the beam, 
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For both the simply supported a d the cantilever beam, as 
previously mentioned, an exact relat i p  w a s  used between the 
depth of the elastic-plastic boundary a t  nodes i n  the p l a s t i c  
range and the applied load to  obtain r e s u l t s  from the f i n i t e  ele- 
ment analysis ,  U s e  of this relat ionship,  which admittedly does 
not e x i s t  for  mose s t ructures  of i n t e re s t ,  w a s  J u s t i f i e d  as a way 
to  check the v a l i d i t y  of the assumptions made i n  choosing such 
uan t i t i e s  as the displacement function, the p a s t i c  s t r a i n  dis-  

t r ibu t ion  , and the representation of the e las t ic -p las  t i c  boundary. 
As the r e s u l t s  indicated, these assumptions appear t o  be j u s t i -  
f i e d  f o r  the f i n i t e  element analysis ,  

Since the depth of the e l a s t i c -p l a s t i c  boundary i s  not gen- 
e r a l l y  known a t  the current load s tep ,  a more generally app l i -  
cable procedure w a s  devised and applied t o  the cant i lever  beam, 
e s u l t s  w e r e  recomputed and a load-deflection curve w a s  obtained 

by using an approximate value fo r  the depth of the ehastic- 
plastic boundary (see Fig. 40) This value, fo r  any increment of 
load, i s  based on the t o t a l  s t r a i n  d i s  ibu t ion determined a t  the 
end of the preceding load increment, i s  procedure cannot lead 
to  the development of a f u l l y  p QSS section, Conse- 
quently, it i s  assumed tha t  a f l a s t i e  cross section e x i s t s  
a t  a node when p l a s t i c i t y  has developed through a specified pro- 
portion of the thickness, The deflections and slope of the load- 
deflection curve f o r  t h i s  s t ruc ture  increase qui te  rapidly beyond 
a value of loa 
percent of the end cross section, Thus i n  the analysis  t h i s  
value w a s  chosen as the c r i t e r i o n  to  determine the development of 
a f u l l y  p l a s t i c  cross section, The degree of approximation asso- 
c ia ted with the use of the approximate procedure for  determining 
values of the depth of the e l a s t i c -p l a s t i c  boundary i s  i l l u s -  
t ra ted  i n  the f igure by a comparison with the exact solution, 
The r e s u l t s  can be seen to  compare favorably f o r  most of the load 
range considered, The maximum divergence, which occurs i n  the 
v i c i n i t y  of the collapse load, i s  about 7’ percent, 

fo r  which p l a s t i c i t y  has developed through 80 

A l s o  shorn i n  i g B  40 are r e s u l t s  f o r  the cantilever beam 
in-hardening material behavior, These re- 

s u l t s ,  shown as the dotted curve, are compared with the corre- 
sponding r e s u l t s  obtained by assuming e l a s t i c ,  idea l ly-p las t ic  
behavior, The close agreement of r e s u l t s  for  strain-hardening 

c t l y  p l a s t i c  behavior can be a t t r i bu ted  to  the use of 
sgood s t r a i n  hardening parameters chosen t o  approximate 

the e l a s t i c ,  ideal ly-plast ic  s t r e s s - s t r a in  curvee The slope of 
the load-deflection curve for  strain-hardening behavior i l l u s -  



trates tha t  the beam s t i l l  possesses some s t i f f n e s s  beyond the 
theoret ical  collapse load predicted by assuming per fec t ly  p l a s t i c  
behavior e 

Figure 41 i l l u s t r a t e s  the application of the procedure t o  a 
s imply supported beam subjected t o  combined bending and ax ia l  
loads, A s  previously discussed, the analysis fo r  t h i s  problem 
requires the introduction of an i n i t i a l  stress s t i f f n e s s  ma 
t o  account f o r  the e f f e c t  of the ax ia l  load on the bending 
ness. Independent determination of the posit ion of the two 
e la s t i c -p l a s t i c  boundaries r e l a t i v e  t o  the upper and lower sur- 
faces i s  a l so  required for  t h i s  analysis because the ax ia l  load 
has the e f f e c t  of introducing asymmetry about the middle surface, 
Results have been obtained fo r  casesinwhich a uniform lateral 

oad a c t s  i n  conjunction with a constant tens i le  o r  compressive 
x i a l  load, indicated i n  the f igure by T = +lo00 and T = -1000, 

respect ively* These r e s u l t s  are compared with those f o r  the case 
of pure bending, indicated as T = 0. A s  shown i n  the figure,  
the e f f e c t  of the a x i a l  compressive load, compared to  the case of 
pure bending, i s  to  reduce the s t ruc ture ls  s t i f f n e s s  while the 
t ens i l e  load increases i t ,  No solution to  t h i s  problem by using 
a continuum analysis  s i m i l a r  t o  the one developed for  pure bend- 
ing i n  the p l a s t i c  range appears t o  be available f o r  comparison, 
For the case of compressive a x i a l  load, the lateral load w a s  in- 
cremented to  a value tha t  resul ted i n  f a i l u r e  of the s t ructure ,  
This f a i l u r e  i s  indicated i n  Fig, 41  by the near v e r t i c a l  slope 
of the load-deflection curve. It should be noted tha t  i n  t h i s  
problem it  w a s  not necessary to  develop a completely plastic 
cross section f o r  collapse to  occur. The reduction of s t i f f n e s s  
caused by the ax ia l  compressive load and the propagation of the 
e l a s t i c -p l a s t i c  boundary through y a portion of the thickness 
w a s  su f f i c i en t  t o  cause f a i l u r e ,  i s  type of f a i l u r e  i s  asso- 
c ia ted  with p l a s t i c  buckling r a the r  than with the formation of a 
mechanism, 

Of special  i n t e r e s t  i n  e l a s t i c  and elastic-plastic struc- 
t u ra l  analysis i s  the behavior of plates with various shapes and 
boundary conditions, In addition, the p l a s t i c  analysis of s t ruc-  
tures with cutouts i s  extremely important, since the G U % Q U ~ S  gen- 

t i a te  p l a s t i c  flow, It w a s  on is basis  t ha t  the s t ructures  
considered i n  t h i s  section were chosen to  demonstrate the p l a s t i c  
pure bending analysis of plates, For these s t ructures ,  a t  least 

l y  r e s u l t  i n  regions of hig stress gradient tha t  can i n i -  

s t i c  solution and, for  most, a e l a s t i c -p l a s t i c  o r  l i m i t  
is solut ion are available En e l i t e r a t u r e  

6% 



.. - The procedure fo r  
l y  supported uniformly 

loaded square plate,  
sent  the quarter panel, load versus cent ra l  deflection curves f o r  
t h i s  s t ructure ,  assuming e l a s t i c ,  ideal ly-plast ic  and e l a s t i c ,  
s train-hardening m a t  iaE behavior, have been determined and are 
shown in  Piga 42a, ce again, as i n  the case of the beam, the 
close agreement of r e s u l t s  fo r  both types of materia 
at t r ibueable  to  the choice of strain-hardening parameters tha t  
approximate e l a s t i c ,  ideal ly-plast ic  material behavior 

Using a 36-element ideal izat ion to repre- 

behavior i s  

The bmberg- sgood parameters tha t  w e r e  used i n  computing 
the hardening coeff ic ient ,  as outlined i n  Appendix A, are: 

7 2 = 10 lb/in, 

2 = 35,400 l b l i n .  0C.7 0 

n = 19.5 B 

These parameters were used together with a yield stress of 
0 = 38,800 lbbin,  , and Poisson's r a t i o  Y = 0.30, yield 

Also shown i n  Pig. 42a 
present analysis,  with elastic, ideally-g a s t i c  material behavior 
being assumed, with those of Ref. 38, Agreement i s  good f o r  most 
of the load range considered, with the grea tes t  discrepancy oc- 
curring as the magnitude of the load approaches the collapse 
value f o r  the s t ruc tureO 

i s  a comparison of r e s u l t s  from the 

The ideal izat ion and y ie ld  se the square p l a t e  are 
Q W ~  i n  Fig.. 42b fo r  the upper l e  adrant of the struc- 

Yielding or iginates  on the upper and lower surface a t  the ture. 
corners of the p l a t e  a t  a load of p -- pa%/6 = 0,502 and c 
mences a t  the center of the p l a t e  a t  p = 8,579, yond t h i s  
value of load, the p l a s t i c  regions propagate fro e v i c i n i t y  of 
the corners and the center of the plate u n t i l  a apse mecha- 
nism forms 

The collapse load fo r  t h i s  s t ructure ,  determined by assuming 
e l a s t i c ,  ideal ly-plast ic  weerial behavior, i s  the value of the 
b a d  a t  which the pat tern of f u l l y  p l a s t i c  elements i s  such tha t  
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the s t ruc ture  becomes a mechanism. The collapse load, as deter- 
mined by the present analysis i s  p == 1,137 and compares favor- 
ably with a value of 
scribed i n  Ref, 3 5 .  The pat tern sf development of the p l a s t i c  
region i n  the plane of the p l a t e  and the propagation of the 
e l a s t i c -p l a s t i c  boundary through the thickness of the plate are 
shown i n  Pigs. 42c and 42d, respectively, e crosshatched area 
i n  Fig .  42c represents those regions ~f the plate  in which p las -  
t i c i t y  has developed t o  SO= degree but extends through less than 
80 percent of the thickness. The shaded area represents those 
regions i n  which p l a s t i c i t y  extends through more than 80 percent 
of the thickness, Considering the lat ter region as f u l l y  p l a s t i c  
leads to the development of p l a s t i c  hinges along 'the diagonals ~f 
the square plate,  as shorn i n  Pig. 4 . 2 ~ ~  A s  i n  the case of the 
beam, t h i s  c r i t e r i o n  i s  necessary because determining the depth 
of the e l a s t i c - p l a s t i c  boundary on the basis  of t o t a l  strains 
cannot lead to  the development of a f u l l y  p l a s t i c  section, 

1,078 obtained from a l i m i t  analysis de- 

rec  
P ig 

The pa t te rn  of development of the p l a s t i c  region i n  a narrow 
tangular p l a t e  (q = 0.3) i s  shown i n  igs, 4 3 a - 4 3 ~ ~  In 
e 43a the 80 percent c r i t e r i o n  w a s  again used to  determine 

the pa t te rn  of f u l l y  p l a s t i c  sections i n  forming the collapse 
mechanism. Prom t h i s  f igure i t  is  evident t ha t  the sections tha t  
form the collapse pat tern do not a l l  l i e  on the diagonals of the 
p l a t e  

A comparison of available upper bound solutions fo r  the Boad- 
carrying capacities of rectangular plates of various aspect 
r a t i o s  i s  shown i n  F igB 44a, The so l id  curve represents the so- 
l u t ion  (Ref, 46) obtained by using the von Mises yield c r i t e r ion  
i n  conjunction with assumed collapse pat tern (1) shown i n  the 
f igure.  The dotted curve, taken from Ref, 47, represents the 
upper bound solution obtained by using the Tresca yield condition 
i n  conjunction with assumed collapse pat tern (2) Results from 
the finite-element analysis,  represented by the so l id  circles9 
indicate tha t  displacement pa t te rn  (2) provides a more accurate 
representation of the collapse mechanism than does pat tern (1) 
An upper bound solution, obtained by ehe present authors, using 
the second displacement pat tern i n  conjunction with the von 
yield condition i s  shown as the dashed curve i n  Pig, 44a, The 
r e s u l t s  from the present analysis compare favorably with this 
solution and are s l i g h t l y  below i t  except fo r  extremely low as- 
pect r a t i o s ,  For such narrow plates ,  the use of the 80 percent 
c r i t e r ion  i n  conjunction wLi3-1 the calculation of the depth ~f the 
e l a s t i c -p l a s t i c  boundary from the t o t a l  s t r a i n  d is t r ibu t ion  s f  



the preceding s t e p  is not ade ate, 
cent cri terion. based on a careful examination of the koad-deflec- 
t ion h is tory  appears to  be warranted, 
might be to  incorporate an i t e r a t i v e  procedure i n  the method, of 
solut ion,  

A relaxation of the 80 per-  

A possible a l t e rna t ive  

d be noted 

imens ional ized increases 
with decreasing aspect r a t i o ,  and appro 
pect r a t i o  a roaches zero, 
while the l e  t h  increases 
dimensionalized collapse l o  
pect r a t i o  decreases, and a 
f o r  a uniformly-loaded i n f i n i t e  s t r i p .  The collapse load f o r  the 
i n f i n i t e  s t r i p  is  computed to  be p = 0.38Sp and is  determined 
from a yield l i m i t  analysis by assuming tha t  the collapse mec 
nism consis ts  of a 
of the plate. 

"yield-hinge" formed along the e n t i r e  leng 

The collapse pattern. and the propagation of the elastic- 
p l a s t i c  boundary through the thickness along two axes of a uni- 
formly-loaded square plate  with three s i  l y  supported edges and 
one f r e e  edge are shown i n  Figs. 4 5 a - 4 5 ~ ~  
region appears f i r s t  i n  the v i c i n i t y  of the midpoint of the free 
edge and propagates from t h i s  point and from. the corners formed 
by the simple supports t o  form the "Y" shaped collapse mecha- 
nism. The load a t  which the mechanism forms i s  p = 0.715a This 
compares f a i r l y  c1 se ly  with a collapse load of p = 0.654, ob- 
tained from a yield l i m i t  analysis i n  Ref ., 35, The curve of load 
versus def lect ion a t  the midpoint of the f r ee  edge i s  shown i n  
Fig. 45d, 
magnitude of the load approaches the collapse value, 

The f u l l y  p l a s t i c  

The slope of t h i s  curve i s  nearly v e r t i c a l  as the 

e s u l t s  f o r  the e l a s t i c ,  ideal ly-plast ic  behavior of a uni- 
-loaded clamped square p l a  e are shown i n  Figs  46, The 

i s m  f o r  t h i s  stm o m  i n  Fige 46a, 
consis ts  of ts formed along the 

f the corners) of 
urs ,  as deter-  

mined from esent analysis,  ch i s  s i g n i f i -  
those values determined from a yield l i m i t  
of 2.31 i s  predicted i n  Ref, 48, a 

of 2,052 is  given i n  R e f .  3 5 8  The i n a b i l i t y  of the present 
analysis  to  predict  the collapse load of the clamped plate 
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accurately may be a t t r ibu ted ,  i n  p a r t ,  to  the need f o r  a much 
f i n e r  ideal izat ion of the s t ructure ,  par t icu lar ly  along the edges 
where there i s  a rapid change i n  curvature, 

The propagation of the e l a s t i c -p l a s t i c  boundary through the 
depth along y = 0 
As indicated i n  the figure,  two p l a s t i c  regions ex i s t :  the f i r s t  
i s  localized i n  the v i c i n i t y  of the clamped edges, and the second 
region or iginates  a t  the center of the plate and propagates 
toward the edges, A t  a load of p = 2,41 the la t ter  region i s  
seen to  be of i r regular  shape f o r  

i s  shown fo r  three values of load i n  Figs 46b, 

x/a > 0,5, 

Deflection p ro f i l e s  along y = 0 are shown fo r  three values 
of load i n  Figs  46c. The load of p = 0,617 represents the 
maximum e l a s t i c  load. The deflection p ro f i l e  f o r  p =5 2,41 i1- 
l u s t r a t e s  the diminishing e f f e c t  of the clamped boundary i n  re- 
s t ra ining displacements i n  the region near the edges. At t h i s  
value of load the sections along the edges, with the exception of 
the corners, are near ly  f u l l y  p l a s t i c .  

The d is t r ibu t ion  of moments ly, and My along y = 0 and 
y = a are shown fo r  two values of load i n  Figs,  46d to  46g, 
The moments are nondimensionalized with respect t o  the f u l l y  
p l a s t i c  moment ( i . e , ,  the moment a t  a f u l l y  p l a s t i c  section 
fo r  the one-dime ional case of a beam). The red is t r ibu t ion  of 
moments as a consequ nee of p l a s t i c  f l o w i s  c lear lyevident  i n  
these f igures .  S i m i  ar red is t r ibu t ions  are indicated i n  Refs, 38 
and 39, 

The collapse pat tern of a uniformly-loaded simply supported 
square plate  with a cent ra l ly  located square hole i s  shown i n  

hole, and the r a t i o  of the width of the hole to  the width of the 
plate  i s  1/3,  
dimensionalized collapse load, p = l,Ol, are very nearly the 
same as those obtained for  the simply supported square p l a t e  
without the hole, 
the present analysis  i s  approximately 3 percent greater  than the 
value of 
analysis of Ref, 35, 

i g .  47a, A f r e e  edge i s  assumed along the perimeter of the 

The collapse pat tern and the value of the non- 

The magnitude of the collapse load obtained i n  

obtained from the upper-bound yield l i m i t  p = 0,977 

i s t r ibu t ions  of bending moments i n  the and y direc- 
t ions along the ax i s  of symmetry y = 
of load i n  Figs,  47b and 47c, respec t i  
p = Oe2229 which represents the maximum e l a s t i c  load f o r  t h i s  
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structure:, che maximum vaLue of Nx occurs i n  the v i c i n i t y  of 
6x1~1 =: 4 and the mximum value of .k$ a t  the edge of the hole, 
In the case of My 
p = 0,950 i s  pronounced, A t  t h i s  load the maximum moment i s  
located a t  some distance from ehe edge of the hole. 
red is t r ibu t ion  i s  indicated i n  Fig, 47d for the case of the 
moments PIx and My along the diagonal, 

the red is t r ibu t ion  tha t  occurs a t  a load of 

A s i m i l a r  

The maximum twisting moment occurs a t  the corner of 
the square hole for purely e l a s t i c  behavior, as shown i n  Pig. 47e. 
A s  a consequence of p l a s t i c  deformation, the maximum value of 
Mxy s h i f t s  t o  the corners of the p l a t e .  

In Pig. 48, r e s u l t s  obtained fo r  the uniformly-loaded simply 
supparted s q u a r e  plate by using the 16-degree-of -freedom rec- 
tangular element are compared with r e s u l t s  obtained by using the 
18-degree-of-freedom triangular element, The t o t a l  number of 
degrees of freedom used i n  the representation of a quadrant of 
the s t ructure  i s  144 for  the rectangular and 150 for  the tri- 
angular element. Load increments of A p  = 0,6846 are used f o r  
both ideal izat ions.  Results i n  the form of a deflection p ro f i l e  
and moments and along y = 8 are in complete agreement 
a t  the maximum elastic load p = 0,50, Results for  a load of 
p = 0,95 are v i r t u a l h y  the s a m e  f o r  both idealizatio.ns, with the 
tr iangular eleluent solution predicting s l igh t ly  smaller displace- 
ments and moments along y = 0, 

The value of the collapse load obtained. by using the tri- 
angular element i s  the same as tha t  obtained by using the rec- 
tangu.3.ar" elements e En. addition, the collapse pat tern and the 
propagation of the e las t ic -g las  t i c  bcaundarles determined by using 
the triangular elements are the same as those shorn in  F igs ,  42c 
arid 42~3, 

The ideaBizatim and the collapse pa t t e rn  of a uniformly- 
loaded simply supported square plate with a cent ra l ly  located 
circular ho1.e are shown i n  P i g .  49a, The ideal izat ion of a quad- 
rant of the st'rucmre W B ~ S F S ~ S  of a network of 81 triangular ele- 
naents with 49 nodes, resul t ing i n  266 degrees of freedom, A f r e e  
edge is assumed around the circular hole, and the r a t i o  of the 
diameter of the hole t o  che length of the plate is 1 1 3 ,  

Collapse of this st ructure ,  as predicted by the present 
analysis, ocrcurs a t  a load. of p = pa216 = 1,07, The collapse 



mechanism consis ts  of a region of f u l l y  plastic nodes fo r  
along the edge of the f r ee  hole and extending along the diagonal 
t~ the corner of the p l a t e ,  I 

The def lect ion and circumferential moment around the cir- 
cular hole are shown for  three values of load i n  Figs, 49b and 
49ce At the maximum e l a s t i c  load, p = 0,402, the r e s u l t s  f 
the f i n i t e  element anal i s  are compared with the r e s u l t s  of a 
previous investigation, e€. 49. The correlat ion of r e s u l t s  fo r  
moment and def lect ion is  qui te  good, wi 
of 3 percent occurring a t  

a maximm d i s  
6 = 0" 

The var ia t ion  of the deflections around the hole from @ = O "  
to  8 = 45" increases as the magnitude of the load increases 
into the p l a s t i c  range, However, the e f f e c t  of p l a s t i c i t y  re- 
duces the var ia t ion  of the circumferential moment around the 
hole, and a t  p = 1.02 the circumferential moment d is t r ibu t ion  
is  nearly uniform a t  a value equal to  the f u l l y  p l a s t i c  moment, 

Deflection p ro f i l e s  of the p la te  along the horizontal (or 

are shown f o r  three values of load i n  Figs, 49d and 
ve r t i ca l )  ax is  of symmetry, 8 = Q", and along the diagonal, 
8 = 45", 
49e. The d is t r ibu t ion  of r ad ia l  and circumferential moments 
along 8 = 0" and 8 = 45" are shown i n  Figs. 49f-49i. 'Ehe re- 
d is t r ibu t ion  of moments resu l t ing  from p l a s t i c  deformation i s  
very much i n  evidence i n  these figures.  It i s  of i n t e r e s t  t o  
note i n  Fig,  4%. tha t ,  i n  a l imited region near the hole bound- 
a r y ,  values of the circumferential moment along the diagonal are 
greater  than tha t  of 8;he f u l l y  p l a s t i c  moment. This can occur 
only f o r  states of multiaxial stress where one s t r e s s  component 
exceeds the idea l ly-p las t ic  y ie ld  stress of the material 

Circular plates - bending alone. - Two idealizations used 
f o r  tE representation of c i rcu lar  plates and an annular p l a t e  
are shown i n  Fige 5 0 ,  Idealization (a) consists of 50 elements 
and 34 nodes and r e s u l t s  i n  153 degrees o f  freedom i n  represent- 
ing both a simply supported and a clamped plate ,  
represents a consistent refinement of idea zation (a) and con- 
sists of 128 elements and 8% nodes and res ts i n  387 degrees of 
freedom f o r  both the simply supported and damped p l a t e ,  The un- 
shaded t r iangles  of ideal izat ion (b) are employed i n  the repre- 

Idealization (b) 

sentation &an annular plate ,  me 
t r iangles  r e s u l t s  i n  a 110 element, 

elimination of the shaded 
72 node idealization, and 
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0 degrees of freedom are required for  
ate s imply  ported along both the i and outer circumfer- 

e case of an annular 

ence, For the la r  p l a t e  clamped along the outer circumfer- 
ence and f r e e  the inner boundary, 332 bending degrees 0% 
freedom are r 

Results f o r  the case of a uniformly-loaded simply supported 
c i rcu lar  plate of radius a are shown ' i n  Fig. 51. 
ideal ly-plast ic  material be vior  is  assumed, with 
the f u l l y  p l a s t i c  moment, , equal t o  4000 l b  i n / in ,  Both 
ideal izat ions of Fig. 50 w e r e  used, and the r e s u l t s  obtained from 
both sets of computations w e r e  v i r t u a l l y  the same throughout the 
e n t i r e  load range. Results i n  the form of deflection prof i les ,  
propagation of the e l a s t i c -p l a s t i c  boundary, and the d is t r ibu t ion  
of circumferential and r a d i a l  moments are shown for  three load 
values i n  Figs. 51a to  51d. 

The deflect ion prof i les  shown i n  Fig. 51a indicate tha t  the 
plate assumes a nearly conical shape, with the formation of a 
"yield hinge" a t  the center of the p l a t e ,  as the load approaches 
the collapse value. The present analysis predicts a collapse 
load of It should be noted tha t  the tri- 
angular elements used are conforming elements, and hence no slope 
discont inui t ies  (kinks) can e x i s t  as they do i n  a l i m i t  analysis ,  
This collapse load compares qui te  favorably with the value of 
p = 6.51 predicted from a yield l i m i t  analysis  i n  Ref. 50, The 
l i m i t  analysis re ires the e n t i r e  plate  to  be f u l l y  p l a s t i c  a t  
collapse, whereas i n  the present analysis collapse is  indicated 
when a " fu l ly  p l a s t i c "  section forms a t  the center of the p l a t e ,  
Beyond t h i s  point the displacements increase qui te  rapidly.  The 
e l a s t i c -p l a s t i c  boundaries a t  various stages of loading are 
plot ted i n  Fig. 51b. Consistent with our assumptions concerning 
the shape of the boundary, the actual  boundary is  represented by 
a series of s t r a i g h t  l i n e  segments, This shape i s  approximated 
by the smooth curves shown i n  Fig. 51b. Figures 51c and 51d 
i l l u s t r a t e  the red is t r ibu t ion  of circumferential and r a d i a l  
moments tha t  take place i n  the p l a s t i c  range. 

p = pa2/% = 6.50, 

The r e s u l t s  from the present analysis,  obtained by using 
load increments of ~p = pa2/ = 0,025, are compared with re- 
s u l t s  from the layered f i n i t e  lement approach of R e f ,  1 
the la t ter  investigation, the elements and layers used for  the 
ideal izat ion of the s t ruc ture  numbered 20 and 40, respectively,  
and the load w a s  increased i n  increments of A p  =: 0,108 to  
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0.125, Results from both analyses cor re la te  qu i te  w e l l  fo r  the 
e n t i r e  range of loading, 

The uniformly-loaded simply supported c i rcu lar  p l a t e  w a s  
chosen as a t y p i c a l  case f o r  application of the p l a s t i c  bending 
analysis procedure t o  demonstrate the var ia t ion  of r e s u l t s  ob- 
tained by using a range of load increments. oad versus central  
deflection curve are shown i n  g. 52 fo r  load increments rang- 
ing from A p  = 0,  125 to  0.20. The r e s u l t s  are necessarily 
ident ica l  up to  the load a t  whi the yield condition is  satis- 
f i ed  a t  the center of the s t ruc ture  (p = pa2/ 3.28). These 
curves show there i s  a wide divergence among computed r e s u l t s .  
This is  t o  be expected, since the predictor procedure followed 
i n  the present analysis  uses estimated values of p l a s t i c  s t r a i n  
and depth of e l a s t i c - p l a s t i c  boundary a t  nodes based on values of 
these quant i t ies  computed a t  the preceding load l eve l ,  As the 
load leve l  increases and as the loading progresses fur ther  i n to  
the p l a s t i c  range, these estimated values of p l a s t i c  s t r a i n  and 
location of the e l a s t i c -p l a s t i c  boundary become less accurate. 
A t  a load leve l  of p = 6 the maximum difference i n  computed 
r e s u l t s  is  approximately 25 percent. The r e s u l t s  for  Ap=0.0125 
and A p  = 0.025, however, do indicate some convergence of the 
r e s u l t s  f o r  most of the load range. 

Results f o r  the e l a s t i c ,  strain-hardening behavior of the 
uniEormly-loaded simply supported c i rcu lar  plate are shown i n  
Fig. 53. The s t r e s s - s t r a in  curve of the material chosen fo r  the 
s t ructure  i s  described by the following Ramberg- sgood parame- 
ters: E = 107 lb/in.2,  a O e 7  = 24,000 l b / i n e 2 9  and n = 6.66. 

Poisson's r a t i o ,  Y = 0033, are used., Figures 53a and 53b 
i l l u s t r a t e  the def lect ion prof i les  and location of the elastic- 
plastic boundaries a t  various stages of the loading. As can be 
anticipated,  the red is t r ibu t ion  of moments a t  occurs fo r  
e l a s t i c  strain-hardening behavior, shown i n  igs .  53c and 53d, 
is less pronounced than the red is t r ibu t ion  tha t  occurs by as- 
suming e l a s t i c ,  ideal ly-plast ic  material behavior, as shown i n  
Pigs, 51c and 5ld,  

n addition, a yield stress of oo= 16,000 lb / in ,  and 

s u l t s  for  the elastic, idea p l a s t i c  behavior of a uni- 
ed c i rcu lar  p la  f radius a are shown i n  
tress of oo = 08 lb/ in ,2  and 

0,24 w e r e  used i n  the analysis ,  Both ideal izat ions 
w e r e  employed to  determine ehe elastic behavior of 
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t h i s  s t ruc turee  The value of the r ad ia l  moment along the clamped 
edge using ideal izat ion (a) i s  8 percent greater  than the corre- 
sponding value computed from a continuum analysis,  Ref, 51, It 
is  conjectured tha t  t h i s  discrepancy i s  due i n  p a r t  t o  the repre- 
sentation of the actual  c i rcu lar  boundary by a polygon. Some 
support fo r  t h i s  conjecttire i s  provided by the r e s u l t s  using 
ideal izat ion (b) Since the Patter representation yielded some- 
what be t t e r  r e su l t s  for  the r ad ia l  moment (4 percent greater  than 
the exact value) i t  w a s  chosen t o  represent the s t ructure .  

A refined representation i s  a l so  required for  the p l a s t i c  
analysis of t h i s  s t ruc ture ,  As indicated i n  Pigo 54b, two sepa- 
rate regions of p l a s t i c i t y  develop. The f i r s t  i s  along the 
clamped edge; the second starts a t  the center of the p l a t e  and 
propagates i n  the r ad ia l  direct ion,  Collapse of the s t ruc ture  i s  
indicated w i t h .  the formation of f u l l y  p l a s t i c  sections along the 
clamped edge (a "hinge c i rc le" )  and of a f u l l y  p l a s t i c  section o r  
hinge a t  the center of the p l a t e ,  The present analysis  predicts  
the formation of t h i s  collapse mechanism a t  a load of 
p = pa2/% = l2*45, which agrees very closely with the value of 
p = E2e5 predicted from the yield l i m i t  analysis of Ref. 5 0 ,  

Once again. the r e s u l t s  of the present analysis using load 
have been compared with the r e s u l t s  increments sf A p  = 0.125 

from the layered f i n i t e  element approach of Ref. 12, In the Bat- 
ter investigation the load w a s  increased i n  increments of 
A p  = 0,250 and the elements and layers  used fo r  the ideal izat ion 
of the clamped plate  totaled 2 and 48, respectively.  Results 
from both analyses f o r  the def lec t io  prof i les ,  shown i n  Fig. 54a, 
a r e  i n  agreement fo r  loads of p = 6 5 and p = 9.0. However, 
a t  a load of p = 11,5 there i s  a substant ia l  difference i n  the 
r e su l t s ,  with the present analysis predicting larger  
ments than those obtained i n  the layered. approach, 
with the prediction of larger  displacements, the present analysis 
indicates the development of a larger  region of p l a s t i c i t y  i n  the 
plane and through the depth of the plate than t h a t  indicated i n  
Ref. 12, as shown i n  

The difference i n  r e s u l t s  for  e deflection p ro f i l e  a t  
p = 11.5 
tained with the layered f i n i t e  e ement analys s i n  the case of 
the simply supported p l a t e .  
ference may be the f a c t  tha t  the deflections h a =  ease rapidly as 
the load approakhes the collapse value for  the s t ruc ture ,  Thus 
a t  a load of 

i s  disturbing, i n  view of the excel en t  agreement ob- 

possible explanation f o r  t h i s  d i f -  

p i =  1Pe5, which represents 92 percent of the 
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theore t ica l  collapse load, the deflections become a r b i t r a r i l y  
large and a comparison of values of displacements a t  this  load 
may be of no significance,  

The redistribu.t ion of moments i n  the circumferential and 
r ad ia l  direct ions i s  shown i n  F i g s ,  54c and 54d. Comparison 
with Ref, 'E2 i s  good, with the exception of the circumferential. 
moment d i s t r ibu t ion  a t  a load af p = lB,5. A maximum difference 
of r e s u l t s  appears d o n g  the clamped edge, r = a ,  A t  t h i s  point 
the value o f  circumferential moment, as given by R e f ,  12, is 
equal to  the f u l l y  p l a s t i c  moment &,e This value for  % is ,  
however, questionable. Prom Pig. 54d, the same analysis appears 
to predict  a value of the r ad ia l  moment along the clamped edge 
greater  ( i n  absolute magnitude) than the fully p l a s t i c  moment. 
Since Me and are the only components of moment along the 
clamped edge, t IN@ 1 = 
and > E$, i s  inadmissible fo r  a perfect ly  p l a s t i c  material. 
obeying the von Mises yield condition. 

conditioa predicted by Ref e 1 2 ,  v f n  a , 

Results fo r  the uniformly-loaded clamped plate assuming 
elas t i c ,  s train-hardening material behavior are shown i n  P ig  
The Ramberg-Bsgood parameters are ident ica l  t o  those used f ~ r  the 
simply supported p l a t e  of F i g ,  5 3 ,  Comparison of r e s u l t s  with. 
the layered f i n i t e  element approach of f .  13 i s  favorable fo r  
most o f  the load range exce for the d lect ioi .  p ro f i l e  a t  a 
load of 
s t ruc ture  from the present analysis consistently predict  larger  
displacements i n  the p l a s t i c  range than those given in Ref,  13, 
The red is t r ibu t ion  of moments shown in  Figs. 55c and 55d i s  
less pronounced fo r  the s train-hardening behavior than for the 
ideal ly-plast ic  materials. 

55 

p = 560 lb/ in .2 ,  ce again, the r e s u l t s  fo r  t h i s  

Figure 56 i l l u s t r a t e s  the r e s u l t s  for the elastic, ideally- 
p l a s t i c  behavior of a uniformly-loaded a n w l a r  plate, simply 
supported along both rhe imer and outer edges, T h e  ratio of the 
inner t o  outer radius i s  0,375. The unshaded eriangles of 
ideal izat ion (Is) (Pig, 50)  are used to  represent a quadrant o f  
the s t ructure .  Values for  the yield stress, Ysung9s moduk~s, and 
Poisson's ratio are ident ica l  t o  those used for Ehe simply sup- 
ported p l a t e  of Fig. 51, 

The value of the collapse load obtained from the present 
analysis  is 
plates with various ra t ios  of inner to  outer" radius are givers i n  

p = pa2/Mo = 2 & , 1 ,  The toll-apse loads for annular 
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Fig. 4 ,5  of f .  52. These loads w e r e  obtained from a l i m i t  
analysis by using the Tresca yield condition, 
b/a = 08375, 

For a r a t i o  of 
the value of the col apse load as determined from 

i g e  4 * 5  i s  p = 5.2, The ass llapse pat tern of the 
i m i t  analysis,  c n s i s t en t  with a yield surface, i s  rep-  

11 resented by two concentric hinge c i r c l e s , "  For b/a = 0,375 
these hinge c i r c l e s  are closely spaced, and from F 

i n  the present analysis with the formation of one hinge c i r c l e  
located along r/a = 0.625. 

ef e 52 are located a t  r /a  = 0.625 and 0,670, 

The def lect ion prof i les ,  propagation of the e l a s t i c -p l a s t i c  
boundaries, and d is t r ibu t ion  of circumferential and r ad ia l  moment 
are plot ted i n  Figs,  56b to  56d fo r  three values o f  load, The 

= 16,3  represents the maximum e l a s t i c  load fo r  t h i s  
p l a t e  

te  - bending. - The p a s t i c  bending analysis  
t o  obtain r e s u l t s  fo r  e e l a s t i c ,  ideally- 

plastic behavior of a uniformly-loaded equi la te ra l  tr iangular 
plate  simply supported along the edges. The ideal izat ion and 
dimensions of the p la te  are shown i n  Fig. 57a. Material proper- 
t i e s  are the same as those chosen fo r  the ideal ly-plast ic  simply 
supported c i rcu lar  plate  of Fig. 51. An ana ly t ica l  solution f o r  
the e l a s t i c  deflections i s  given i n  Ref. 51. Excellent agreement 
with these r e s u l t s  w a s  obtained a t  the maximum e l a s t i c  load 
p = pH2/6Mo = 4.65, as shown i n  Figo 57c. 

The collapse pat tern fo r  the tr iangular p l a t e  i s  indicated 
by the shaded region of i g o  57a, The value of the load a t  which 
t h i s  collapse mechanism forms i s  p = 10e06. The corresponding 
value of the collapse load obtained by a l i m i t  analysis i s  
p = 10.39. The l i m i t  analysis procedure used to  obtain the la t -  

of the collapse load follows tha t  outlined i n  R e f ,  46. 
ses yield condition w a s  used i n  conjunction with an 

assumed collapse pat tern formed along the medians of the tr iangle,  
The propagation of the e l a s t i c -p l a s t i c  boundary through the t h i c k  
ness along the median y = 0 i s  shown f o r  three values of load 
i n  Fig. 57b. e f lec t ion  p ro f i l e s  and d is t r ibu t ions  of moments 

and acting along the medians are plot ted f o r  loads of 
p = 4e65 and p = 9-31 i n  Figs. 57c to  57e, respectively,  

The p l a s t i c  analysis procedure outlined i n  t h i s  section has 
a l s o  been applied to  s t ructures  under combined bending and 
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membrane loading A s  s t a t ed  above, the cases considered are l i m -  
i t e d  to  those f o r  which a constant membrane load i s  applied to  
the s t ructure .  The magnitude of the applied membrane load is  re- 
s t r i c t e d  to  values less than tha t  necessary to  i n i t i a t e  p l a s t i c  
deformation, 
ing i s  then applied and additional lateral  loads are applied i n  
f i n i t e  increments while the membrane load i s  held constant. 

The la teral  load necessary to cause i n i t i a l  yield- 

0 -- 
Curves of lateral  load versus center deflection of a simply sup- 
ported square plate  under combined loading are shown i n  Fig. 58a 
for  e l a s t i c ,  ideal ly-plast ic  material behavior. The magnitude 
and sense of the applied membrane load is  indicated by a ,  the 
r a t i o  of the applied membrane load to  the buckling load, Merit 
(a  
t ens i le  membrane load). For posi t ive values of a the lateral  
load w a s  incremented to  values tha t  resul ted i n  the f a i l u r e  of 
the s t ructure .  This f a i lu re ,  indicated by the near v e r t i c a l  
slope of the load-deflectton curves i s  associated with p l a s t i c  
buckling ra ther  than with the formation of a collapse mechanism. 
Results for  applied t ens i l e  membrane loads and pure bending 
(a  =I 0) are also shown i n  Pigo 58a. 

i s  posi t ive for  compressive membrane load and is  negative fo r  

Load versus cent ra l  deflection curves for  the simply sup- 
ported square plate under combined loading are shown i n  Figs, 58b 
and 58c f o r  e las t ic ,  strain-hardening behavior, and are compared 
with the curves obtained fo r  e l a s t i c ,  ideal ly-plast ic  behavior. 
The Ramberg- sgood s train-hardening parameters are: 
E = 107 l b / i  = 35,400 lb / ine2 ,  and n = 8,5, In addi- 
t ion a yield stress of oOi = 30,000 1b / inm2  and Poisson's 
r a t i o ,  Y = 0,39 are used. I n i t i a l  yie  ding occurs a t  a lower 
value of applied la teral  load f o r  s t r a i n  hardening behavior than 
fo r  idea l ly-p las t ic  behavior, as indicated i n  Figs. 58b and 58c, 
For compressive membrane loading, Fig. 58b, t h i s  earlier i n i t i a l  
yielding f o r  strain-hardening behavior r e s u l t s  i n  an earlier 
f a i l u r e  of the s t ruc ture  than tha t  associated w i  
plastic behavior 

The lateral load-carrying ca a c i t i e s  of the simply supported 
square p l a t e  subjected to  various magnitudes of uniform membrane 
load i n  one direct ion are shown i n  Fig, 59. 
the applied membrane loads range from -1 < a < 1, For t ens i l e  
membrane loads and fo r  the case of pure bending the value of the 

The magnitudes of 



lateral collapse load, i s  ghat value of load a t  
which a collapse mechanism i s  formed, For compressive membrane 
loads, as previously s ta ted,  the value of .&he collapse load i s  
determined from load-deflection behavior, The S I ~ O S ~ ~  var ia t ion  
of the value of the lateral  load-carrying capacity in t rans i t ion  
from compressive to  tens i le  membrane loading of fers  some v e r i f i -  
cation tha t  the choice of an 80 percent c r i t e r ion  is  a reasonable 
one 

p = pa2/6%, 

The lateral  load-carrying capacit ies of simply supported 
rectangular plates under combined loading are shown i n  PigB 60, 
Results are s h ~ m  f o r  t ens i l e  and compressive membrane loads of 

bending, previously shown i n  Pig. 44a, is  repeated i n  Pigs 60,  
a = -1 and a = 3,  respectively.  Zn addition, the case of pure 

Results are shown i n  Fige kif f o r  a simply supported square 
plate subjected to  a uniform lateral load and an in-plane shear 
load. Load versus cent ra l  def lect ion i s  shown i n  Pigo 6 l a .  The 
value of the load a t  which collapse Q C G U ~ S  i s  
The ideal izat ion,  consisting of a gr id  of 8 x 8 square ele- 
ments, and the yield sequence are shown in  Fig. 61b, This f igure 
shows tha t  i n i t i a l  yielding occurs a t  two opposite corners of the 
p la te  and subsequently develops along the diagonal joining these 
corners, The propagation of the e l a s t i c -p l a s t i c  boundary through 
the thickness i s  i l l u s t r a t e d  i n  Fig. 61c. 

p = p a 2 / 6  

Circular plates - combined loading. - ateral load versus 
center deflection curves for  simply supported c i rcu lar  plates 
subjected to various combinations sf uniform lateral and in-plane 
r ad ia l  loads are presented i n  Fige 62a. Results fo r  t ens i l e  and 
Compressive membrane r ad ia l  loads equal i n  absolute magnitude to 
one-third of the e l a s t i c  buckling load ( a  = are compared 
with r e s u l t s  fo r  the case of pure bending 
e l a s t i c ,  ideal ly-plast ic  material behavior A l s o  shown in t h i s  
f igure i s  a load-deflection curve for  the case of e l a s t i c ,  s t ra in-  
hardening material behavior, with the compressive load equal t o  
30 percent of the elastic buckling Isad. 
s train-hardening parameters chosen to  describe the mechanical 
properties a re  ident ical  t o  ose used f o r  the eases shown i n  
Figs. 59 and 53, The ideal izat ion shown i n  Pig. 50a w a s  used to  
obtain the r e s u l t s  shown i n  Pig. 6 2 ,  

( a  = 01, assuming 

The ideal ly-plast ic  and 

74 



A n  apparent d i s t inc t ion  between the behavior o f  the c i rcu lar  
and rectangular plates under combined loadings, as considered 
here, i s  that i n  the former there i s  a more pronounced asymmetry 
i n  the development of stresses, s t r a ins ,  and p l a s t i c  regions with 
respect t o  the middle surface. For  he rectangular plates of 
Pigs, 58 through 6Q3 because of the material and geometric grog- 
erties C ~ O S ~ I I ,  the stresses a t  i n i t i a l  yield a t t r i bu tab le  to  &e 
membrane loads are less than 3 percent of the t o t a l  value, The 
predominant e f f e c t  of the membrane load therefore i s  to s t i f f e n  
( ~ r  soften) ehe s t r u c m r e ,  For the c i rcu lar  plates of Pig. 62, 
on the other and, because of the material and geometric proper- 
t ies used, almost 75 percent of the t o t a l  value of maximum elas- 
t i c  stress is due t o  the membrane behavior, Thus, f o r  the c i r -  
cular  plates, the e f f e c t  of the membrane loads on both the s t i f f -  
ness and the stress d is t r ibu t ion  has a s ign i f icant  influence on 
the value of the lateral load a t  which i n i t i a l  yielding QCCUY"S. 
This i s  evident i n  Pig, 62a where the c i rcu lar  p la te  loaded 
r a d i a l l y  i n  tension (and consequently s t i f f e r )  yields a t  a con- 
siderably lower value of lateral load than the same p l a t e  sub- 
jected to  pure bending, 

Fai lure  of the ideal ly-plast ic  c i rcu lar  plate subjected t~ a 
compressive r ad ia l  membrane load occurs as a p l a s t i c  buckling 
type of phenomenon a t  a value of the lateral load 2.6 t i m e s  the 
maximum e l a s t i c  load, The corresponding plate exhibiting s t r a in -  
hardening behavior experiences f a i l u r e  of a p l a s t i c  buckling type 
a t  a lateral  load 6.61 t i m e s  the maximum e l a s t i c  load, The 
plate  subjected to the r ad ia l  t ens i l e  loading w a s  not loaded to  
f a i l u r e  e 

The growth of the p l a s t i c  regions fo r  the cases involving 
a = *-$ are shown i n  Pigs, 62b and 62c, respectivelys The ex- 
t en t  of these regions i s  seen to  be s i m i l a r  fo r  the case, 
p = 1 * 3 7 ,  a = +*, and the case, p = JP9l, a = -** Collapse i s  
imminent i n  the former case but not i n  the la t ter ,  

The f i n a l  problem considered i s  khat of an annular p l a t e  
clamped along e outer edge and f r ee  along the inner edge. The 
inner t o  outer adius r a t i o  i s  0,375 and the thickness i s  
Q * 5  inch. 
t r ibuted Ea eral load acting alone and a l so  i n  combination with a 
uniform compressive r ad ia l  load equal t o  25 percent of 
t i e  buckling load are presented i n  Fig, 6 3 , ,  Elas t ic ,  ideally- 
p l a s t i c  material behavior i s  assumed, with the mechanical proper- 
ties chosen as follows: a yield stress of 30,000 p s i ,  Young's 

e s u l t s  fo r  the plate subjeceed to  a uniformly-dis- 
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modulus of lo7 p s i ,  and Poisson8s r a t i o  of 0 . 3 -  Curves of 
load versus the def lect ion along the inner edge are shown fo r  the 
two cases i n  Fig. 63a. e extent of the p l a s t i c  regions a t  
various stages of loading are presented i n  Fig, 63b fo r  bending 
alone and Pig. 63c fo r  the combined loading case, For the l a t -  
ter case two p l a s t i c  regions appear i n i t i a l l y ,  one emanating from 
the upper surface a t  the f r e e  edge and the second originating a t  
the lower surface along the clamped edgeo Although the region a t  
the f r e e  edge i s  the f i r s t  t o  appear as a r e s u l t  of the stress 
concentration along the hole boundary, the p l a s t i c  zones along 
the clamped edge become more extensive as the lateral bending 
load increases, 

e - To demonstrate 
s outlined fo r  the 

p l a s t i c  bending analysis of t h i s  section, t h i s  procedure has been 
applied to  a simply supported square plate exhibit ing s t r a in -  
hardening material properties.  The Ramberg-Osgood parameters fo r  
t h i s  problem are the s a m e  as those used fo r  the plate of Pigo 42, 
A cyc l ic  load versus center displacement curve i s  shown i n  
Fig. 64a fo r  a load range of p = F1.67 ( p  = pa2/6 
i s  the yield moment, = 3 0  t2) Since there are 
experimental data o r  previous ana ly t ica l  r e s u l t s  f o r  t h i s  s t ruc-  
tu re  fo r  unloading and reversed loading, the computed r e s u l t s  
could not be ver i f ied ,  However, t h i s  curve c l ea r ly  indicates the 
e f f ec t s  of cycl ic  p l a s t i c  deformation. The i n i t i a l  yield load i n  
tension i s  p = 0.75; reversed yielding begins a t  p = O,l6 ,  
pr ior  t o  the removal of a l l  the posi t ive load; and subsequent 
yielding commences a t  p = -0.16, pr ior  to the removal of a l l  
the negative load, Because of the presence of res idual  stresses 
and s t r a i n s  and the Bausehi ger e f f e c t  a t  the end of the f i r s t  
half-cycle, the magnitude of the center displacement a t  p = -1.67 
i s  grea te r  than tha t  a t  p = 1 ,67 .  

& 

Deflection p ro f i l e s  along y = 0 are shown i n  Fige 64b, 
The prof i les  a r e  plot ted a t  the maximum e l a s t i c  load, t 
and minimum loads , and the residual  displacements upon unloading 
from p = +1,67 are also presenteds 

The d is t r ibu t ion  of normal stress components ox and oy 
a t  the surface along y = 0 are shown i n  Figs. 64c and 64d, 
respectively,  and the shear stress dis t r ibut ions a t  the surface 
along y = +a are shown i n  Fig,  Q4e. 
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RIAL TRIC N O N L I W R I T Y  

In the preceding sections, the treatment of e l a s t i c -p l a s t i c  
bending of beams and plates has been based on the assumption of 
zero or  constant applied membrane forces,  The methods developed 
are ,  consequently, applicable only i n  the case of r e l a t i v e l y  
small deflections,  s ince i t  i s  w e l l  known tha t  the membrane force 
generated by the bending of plates in to  nondevelopable surfaces 
i s  s igni f icant  even when the deflection i s  only of the s a m e  order 
as the thickness of the plate (Ref. 51). The same e f f e c t  i s  en- 
countered i n  the bending of res t ra ined beams. 

It i s  desirable,  under these circumstances, t ha t  a general 
method of analysis of grea t  power (such as the finite-element 
method) should 3e extended t o  include the treatment of small 
s t r a i n s  and large deflections,  alone o r  i n  combination with p l a s -  
t i c  behavior. 
framework of the finite-element approach to  account for  geometri- 
ca l ly  nonlinear behavior. These methods are generally c l a s s i f i ed  
as incremental, i t e r a t i v e ,  d i r ec t  search technique, e t c .  

Several methods have been developed within the 

In the present report ,  w e  are concerned with geometric non- 
l i n e a r i t y  occurring i n  combination with p l a s t i c  deformation. 
Consequently, a primary consideration i n  choosing a method fo r  
the analysis of geometric nonlinearity from among the several 
current ly  avai lable  i s  the ease with which it  can be combined 
with methods of p l a s t i c  analysis .  For t h i s  reason, our approach 
i s  based upon a l inear ized incremental formulation, i r e s ,  one i n  
which the nonlinear analysis i s  reduced to  the solution of a 
sequence of l i nea r  incremental equations. In Refs. 4 ,  15, 45,  
53, and 54 t h i s  approach w a s  used t o  solve problems involving 
geometric nonlinearity,  Since the p l a s t i c i t y  re la t ions  are them- 
selves incremental, and the methods developed for  the treatment 
of p l a s t i c  e f f e c t s  depend upon a revis ion of the governing matrix 
equation i n  each loading s t e p ,  the modifications necessary to  in- 
corporate "large deflection" t e r m s  Ere minimal * 

A l imi ta t ion  of the inc rocedure, however, i s  the 
necessity of taking r e l a t i v e l y  small increments i f  the solution 
obtained is t o  converge adequately to  the 
nonlinear problem. 
since the inclusion of geometric nonlinearity involves more ex- 
tensive revisions a t  each loading s tep than does the treatment 
of p l a s t i c i t y .  This limitation can be eased somewhat by using 

I! exact" solution of the 
This can be cost ly  i n  terms of computer t i m e ,  
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larger  s t e p s  i n  conjunction with an i t e r a t i v e  technique. The 
i t e r a t i o n  need not be introduced immediately but may be postponed 
u n t i l  the nonlinearity becomes suf f icientky pronounced' to  require 
i t  e 

Martin (Ref a 45) discusses an incremental numerical method, 
based on the d i r e c t  s t i f fnes s  approach, t h a t  i s  generally a p p l i -  
cable f o r  the treatment of problems involving geometric nonlin- 
e a r i t y ,  This procedure approximates the nonlinear behavior by a 
sequence of l i nea r  steps. Either loading o r  displacement may be 
appl ied.  incrementally, This procedure requires the introduction 
of the i n i t i a l  stress s t i f f n e s s  matrix, and addi t ional ly  the up- 
dating of the geometry a t  the end of each incremental loading 
s t e p .  These considerations and the introduction of the i n i t i a l  
s t r a i n  s t i f f n e s s  matrix represent the basic  modification fo r  the 
development of an incremental procedure t o  account f o r  both types 
of nonlinearity,  

Thus, the method of solution of the general geometrically 
nonlinear problem discussed here involves the solution of 'a 

ence of "beam-column" type problems, i n  which values of the 
membrane stress resu l tan ts  and the geometry of the deformed struc- 
ture are updated i n  each increment of loading. For su f f i c i en t ly  
small loading increments, the increments of ro ta t ion  i n  any 
f i n i t e  element will be small when measured with respect t o  a 
Poeal coordinate system which t rans la tes  and ro t a t e s  with the 
element i n  successive loading steps (but i s  assumed to  remain 
fixed within any one loading step) e Consequently, squares and 
products of the increments of ro ta t ion  may be neglected i n  com- , 

puting increments of membrane s t r a in .  Furthermorep with respect 
to  t h i s  loca l  coordinate system and within individual loading in- 
crements the in-plane problem i n  each element, fo r  i n i t i a l l y  f l a t  
s t ructures ,  i s  uncoupled from the lateral problem, as indicated 
i n  Eqe (58), where the e f fec t ive  p l a s t i c  load vector is  given i n  
Eg, (57) 0 

Because of the presence of geometric nonlinearity, the en- 
t ire element s t i f f n e s s  matrix [I+] i n  q, (21) must be reformed 
i n  each loading s t e p ,  with current stress levels  and geometry 
being used, In the discussion of the development of the e l a s t i c  
s t i f fnes s  matrix, it w a s  mentioned tha t  the only component 
matrices required are the conventional s t i f fnes s  matrices (those 
not dependent upon the presence of s t r e s s )  and the i n i t i a l  stress 
s t i f fnes s  matrix. 
bending s t i f fnes s  due to  the presence of membrane loads, In the 

The ' lat ter matrix accounts f o r  the change i n  
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development of ehe i n i t i a l  stress s t i f fnes s  matrix, the membrane 
s t resses  taken in to  account are those present a t  the beginning of 
the loading s tep ,  any fur ther  changes i n  these stresses occurring 
during the loading s t e p  being neglected i n  tha t  development, 
This const i tutes  the l inear iza t ion  of the procedure during an in- 
crement of loading. 

Some investigators (see Refs, 55-57) have indicated the need 
for  an additional matrix, termed tsthe i n i t i a l  displacement" 
macrix, f o r  the treatment of geometric nonlinearity. Because the 
current analysis u t i l i z e s  a moving" local coordinate sys tern9 
th i s  additional s t i f f n e s s  matrix i s  not required, The expression 
fo r  A e T  

11 

as used here for  a beam element is given as 

where Au and Aw represent the increments in the ax ia l  and 
lateral displacements of the neutral. axis  of Che beam. The usual 
Bernoulli-Euler kinematic beam theory assumptions w e r e  made t o  
obtain Eq, ( 6 6 ) .  The f i r s t  t e r m  on the r i g h t  s ide of the above 
equation represents the extension of the centerline of the beam 
resul t ing from axial  loads; the second t e r m  i s  the contribution 
to the extensional s t r a i n  due t o  l a t e r a l  deflection (the ro ta t ion  
term); and the last t e r m  i s  the conventional. bending s t r a i n  t e r m  
a r i s ing  from the condition tha t  normals t o  the neutral  ax i s  
should, a f t e r  deformation, remain s t r a igh t  and normal t o  the cen- 
t e r l i ne  and unextended, 

P%aryalss expression for the membrane component of t o t a l  
s t r a i n  i s  given as 

Nom, 
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Subtracting Eq, (67) from E q ,  ( 6 8 )  we ge t  

The increments of 
E q s .  (66) and (69) d i f f e r  by the las t  t e r m ,  This t e r m  leads 
to  the i n i t i a l  displaceme t r i x ,  Since, i n  e method used 
ere, Aw i s  measured with respect t o  a oca1 coordinate sys t e m  

t ha t  ro t a t e s  with the element, 
ning of the load increment is  necessarily zero. Thus the i n i t i a l  
displacement matrix i s  zero. If the datum w e r e  the or ig ina l  con- 
figuration, then the i n i t i a l  displacement matrix would be needed 
and the value of aw/ax used would be the t o t a l  valae of the 
slope calculated a t  the end of the preceding s t e p ,  

e membrane components of t o t a l  s t r a i n  i n  

aw/ax, the slope a t  the begin- 

Equation (58) a p p l i e s  t o  an individual element with dis-  
placements taken with respect t o  the loca l  coordinate system, To 
obtain the over-all  response of the s t ructure ,  the contribution 
of each element must be transformed in to  a global system and then 
assembled to  obtain the over-all  load-def lec t ion  relat ionship 

Toward t h i s  end, w e  may w r i t e ,  f o r  an individual element, 

where [TI i s  an orthogonal transformation matrix re la t ing  the 
generalized incremental. nodal displacements referred t o  the loca l  
coordinate axes to  those re fer red  to  the global axes. The sub- 
sc r ip t s  Q and g r e f e r  t o  local  and global coordinate systems, 
respectively,  We can a l so  write 

because of the orthogonality of the transformation. The r e s u l t -  
ing global equation for an individual element i s  



where, as discussed above, [k (0) 3 and [k (1) ] are calculated 
on the basis  of the geometry and membrane s t resses  exis t ing a t  
the s tar t  of the loading s t e p ,  The vector of increments i n  the 
f i c t i t i o u s  forces, { A q ] ,  is  calculated i n  the manner discussed 
above i n  connection with p l a s t i c  analysis .  An increment of load 
i s  then applied and the corresponding displacement increments 
calculated from the matrix equation for  the whole s t ructure .  The 
displacements are then transformed back to  loca l  coordinate sys- 
t e m s  appropriate t o  the beginning of the loading s t e p e  New in-  
ternal  forces are calculated, and t o t a l  stresses, s t r a ins ,  and 
displacements are obtained by summing incremental values. The 
geometry i s  then updated and new loca l  coordinate systems are 
formed. This process i s  repeated u n t i l  the maximum specified 
load leve l  i s  reached o r  the s t ruc ture  f a i l s .  

A detai led discussion of coordinate transformations fo r  a 
beam element and a triangular bending element i s  presented i n  
Appendix Le 

Results for  Geometric Nonlinearity 

To i l l u s t r a t e  the procedure f o r  geometric nonlinearity, a 
simply supported restrained beam subjected to a uniform v e r t i c a l  
load i s  considered. A p lo t  of the cent ra l  deflection versus 
lateral  load f o r  t h i s  beam i s  shown i n  Fig. 65a. The exact re- 
s u l t s  w e r e  obtained from Ref. 51. A s  may be seen i n  Fig. 65a, 
agreement between the present and exact r e s u l t s  for  the center 
displacement i s  qui te  good, The length of the beam i s  60 in . ,  
the moment of i n e r t i a  i s  0,1 in.4, 
tangular cross section i s  1.2 i n a 2 e  To take advantage of sym- 
metry,  6 elements w e r e  used to  represent half the s t ructure .  A 
p lo t  of in te rna l  a x i a l  force versus t o t a l  load fo r  the same beam 
i s  given i n  Fig. 65b, Once again, agreement with the exact re- 

a 51 i s  excel lent ,  It should be noted tha t  i n  beam 
e membrane force generated i s  tens i le  and tends to  

and the area of the rec- 

s t i f f e n  the s t ructure .  

Because of the presence of compressive axial. forces i n  
arches, e l a s t i c  i n s t a b i l i t y  can occur when the loading reaches a 
c r i t i c a l  value, To determine the value of the c r i t i c a l  load ac- 
curately and es tab l i sh  a basis  fo r  i t s  prediction, the determi- 
nant of the over-all  s t i f f n e s s  matrix and the eigenvalues and 
eigenvectors are calculated by means of a procedure developed in 
Ref. 58. 
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To i l l u s t r a t e  the procedure, several c i rcu lar  arches were 
analyzed and the r e s u l t s  compared with those of other authors, 
Geometric imperfections and eccentr ic  loadings w e r e  introduced i n  
several cases to  study the i r  influence on the behavior of the 
arches, Straight  beam elements w e r e  used i n  a l l  the following 
examples 

Figure 66 i s  a p lo t  of load versus cent ra l  def lect ion fo r  a 
s imply supported shallow arch with a symmetric buckling pat tern.  
The r e s u l t s  are cornpared with those of Ref, 4 ,  where a f i n i t e -  
element approach w a s  a l so  used. There is  a 6 percent difference 
between the buckling loads obtained i n  the two analyses, A l s o  
p lot ted i s  the scaled determinant versus load, The value of t h i s  
determinant crosses zero a t  the buckling load, 

Figure 67  i s  another p lo t  of load versus central  deflection, 
Mere the s imply supported arch i s  deep and the governing buckling 
cri terion. i s  the antisymmetric o r  t rans i t iona l  one. The case fo r  
which the concentrated load i s  applied with eccen t r i c i t i e s  of two 
and f ive  inches i s  a l so  shown. These la t ter  r e s u l t s  are compared 
with those of Ref. 4 .  Also included are p lo ts  of the scaled de- 
terminant versus load, For the symmetrically applied load 
(e = 0) ,9 

eccentr ical ly  applied loads, w e  ge t  "top of the knee" buckling. 
It i s  a lso in te res t ing  to  note the difference i n  behavior of the 
determinant fo r  these cases, FOP zero-eccentricity loading, the 
determinant approaches zero, with a near v e r t i c a l  slope; while 
for "top of the knee" buckling, i t  crosses the zero ax is  a t  a 
pronounced angle, an eSfect s i m i l a r  t o  the r e s u l t s  shown i n  
Pigo 66 fo r  symmetric "top of the knee" buckling, 

we get t rans i t iona l  o r  "bifurcation" buckling. For the 

Figure 68 i s  s i m i l a r  to  the two previous f igures .  H e r e ,  
however, a clamped uniformly loaded antisymmetrically buckling 
arch is considered, The r e s u l t s  fo r  zero imperfections are com- 
pared with the exact r e s u l t s  of Ref. 59 and with the r e s u l t s  of 
Ref. 60, where a finite-element approach w a s  used i n  combination 
with an i t e r a t i v e  procedure. 
achieved, For t h i s  arch antisymmetric imperfections i n  shape 
w e r e  a l so  introduced in the form of the buckling shape obtained 
from  he eigenvector analysis.  
f l ec t ion  mode shapes introduced as imperfections w a s  of the order 
of one-tenth of an inch. 

Excellent agreement with both i s  

The maximum magnitude of the de- 

With zero imperfection, bifurcation type buckling occurs 
However9 when imperfections are introduced the lowest  eigenvalue 



never reaches uni ty  nor does the determinant reach zero. Thus 
there is no c lear ly  defined buckling load, and, i n  f ac t ,  the 
lowest eigenvalue decreases a f t e r  having at ta ined a maximum value 
of less than one. A t  t ha t  same load, the determinant begins in- 
creasing a f t e r  having decreased toward zero,  E t  is t h i s  load 
tha t  i s  indicated i n  e f igure  fo r  the two cases where imperfec- 
t ions w e r e  introduced 

Figure 64 shows the same arch as Fig. 67, but with a uniform 
load applied. Geometric imperfections w e r e  a l so  introduced here. 
The behavior of t h i s  simply supported arch i s  found to  be s i m i l a r  
t o  tha t  of the clamped arch of Fig. 68. 

ad versus cent ra l  deflection curves for  a clamped c i rcu lar  
bjected to  a cent ra l  concentrated load are shown i n  Fig. 70. 

Results from the present analysis are compared with those ob- 
tained i n  Refs. 6 1  and 6 2 .  The r e s u l t s  indicate tha t  although 

i n i t i a l  displacement matrix") i n  the analysis of problems in- 
rqal (Ref. 56) proposes the need fo r  an additional matrix (the 

11 

volving geometric nonlinearity,  the technique of the present 
analysis does not require  it. The r e s u l t s  obtained here without 
the use of the i n i t i a l  displacement matrix compare qui te  w e l l  
with the theoret ical  r e s u l t s  of Ref. 62 and with the experimental 
r e s u l t s  of Ref. 61. Further, the sca t t e r  i n  Marqal's r e s u l t s  ob- 
tained by using successively f i n e r  idealizations w a s  not ex- 
h ib i ted  i n  the present analysis .  Although only the r e s u l t s  f o r  
16 elements are shown here, the buckling load obtained by using 
8 elements i s  less than 2 percent higher than tha t  obtained by 
using 16 a 

Results - Combined te r ia l  and Geometric Nonlinearity 

En the preceding applications it was assumed t h a t  the rela- 
tionship between stress and s t r a i n  i s  l inear .  Although t h i s  i s  a 
reasonable representation of the actual  material behavior fo r  
many problems, the specimen's proportional l i m i t  is  qui te  of ten 
exceeded. P l a s t i c i t y  e f f ec t s  must then be included to  gain an 
accurate insight  i n to  the physical response of the s t ructure  to  
additional loading. Furthermore, such important phenomena as 
p l a s t i c  collapse and p l a s t i c  buckling cannot be predicted unless 
t h i s  behavior i s  properly accounted f o r ,  

The restrained beam was chosen to  i l l u s t r a t e  the procedure 
f o r  combined geometric and material nonlinearity. 
of 30,000 p s i  w a s  assumed, and a uniform ve r t i ca l  load applied. 

A yield stress 
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oad versus ce t r a h  def lect ion curves obtained f o r  purely 
c and fo r  ela t i c ,  idea l ly-p las t ic  material behavior are 

i g e  71a. The curves f o r  p l a s t i c  behavior are presented 
for ideal izat ions involving 6 9  12, and 24 elements fo r  one-half 
of the beam. Differences i n  the r e s u l t s  fo r  these ideal izat ions 
appear only a f t e r  the end sections a t  the supports become f u l l y  
p l a s t i c ,  Beyond the value of load a t  which t h i s  occurs, deflec- 
t ions increase qui te  rapidly and collapse occurs shor t ly  there- 
a f t e r .  
nonlinearity is vividly depicted i n  Fig. 71a, where it  i s  seen 
tha t  there i s  a region of the load-deflection curve t h a t  is very 
nearly 1 inear e 

Figure 71b i l l u s t r a t e s  the growth of the p l a s t i c  regions of 
the rest rained beam, The dotted l i n e  a t  9 = 10,74 kips indi-  
cates  a jump i n  the representation of the p l a s t i c  region when the 
end sect ion becomes f u l l y  p l a s t i c .  

The load-deflection h is tory  of the shallow c i rcu lar  arch 

The counterbalancing e f f e c t  of geometric and material 

subjected t o  a concentrated load, previously considered i n  
Fig. 6 6 ,  i s  again shown i n  Fig. 72. Load versus center deflec- 
t i on  curves obtained by assuming e l a s t i c ,  ideal ly-plast ic  mate- 
r i a l  behavior are shown for  two values of yield stress. 
onset of collapse for  t h i s  s t ruc ture  i s  appreciably hastened by 
the introduction of p l a s t i c i t y .  This i s  a t t r i bu tab le  to  the re- 
duction of the s t ruc tu re ' s  s t i f f n e s s  resu l t ing  from the e f f ec t s  
of yielding. 
nonlinearity are complementary. A s  i n  the case o€ the uniformly 
loaded beam subjected to  a constant a x i a l  compressive load, the 
development of a f u l l y  p l a s t i c  cross section i s  not necessary fo r  
collapse to  take place, and f a i l u r e  occurs as a p l a s t i c  buckling 
phenomenon. 

The 

For t h i s  s t ructure ,  the e f f ec t s  of both types of 

Figure 73a i l l u s t r a t e s  the symmetrically buckling arch under 
a uniform load. The load-deflection curves of the e l a s t i c  arch 
and of an e l a s t i c ,  idea l ly-p las t ic  arch with yield stress of 
30,000 p s i  are shown. Once again, the buckling load i s  con- 
siderably reduced by the complementary e f f ec t s  of geometric and 
physical nonlinearity,  
hastened when p l a s t i c i t y  is  included, a r e s u l t  a l so  obtained i n  
Ref. 63, where strain-hardening behavior w a s  considered. Fig- 
ure 73b indicates the rapid growth of the p l a s t i c  regions i n  the 
arch as the loading i s  increased t o  the f a i l u r e  load. Figure 74 
shows the arch of Fig. 73a, but now with clamped ends, This 
arch does not buckle e l a s t i c a l l y  but def lects  continuously with 
increasing load in to  the inverted posit ion.  P l a s t i c i t y  acceler- 
a t e s  t h i s  passage through the zero rise posit ion of the center,  

The onset of buckling i s  appreciably 
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6 .  CONCLUDING RE 

The methodology resu l t ing  from the current investigation i s  
capable of t rea t ing  the nonlinear response of a broad spectrum of 
s t ructures  under a var ie ty  of loading and boundary conditions. 
There are two general types of problems f o r  which the treatment 
of p l a s t i c  e f f ec t s  has i t s  grea tes t  significance. The f i r s t  i s  
concerned with the determination of f a i l u r e  loads and f a i l u r e  
mechanisms of large s t ruc tu ra l  systems, e . g e ,  an a i r c r a f t  wing, 
and assessing the survivabi l i ty  of these systems when they are 
subjected to  some unexpectedly large loading. To take f u l l  ad- 
vantage of the present nonlinear methods fo r  use i n  t h i s  type of 
analysis i t  is  necessary tha t  they be made available as prac t ica l  
tools f o r  the s t ruc tu ra l  designer and analyst .  Much remains to  
be done, however, i n  the refinement of computational techniques 
and the organization of large generalized programs to  permi t  such 
analysis on a convenient basis and a t  a cost  t ha t  is  not prohibi- 
t ive .  This i s  par t icu lar ly  t rue  of the treatment of p l a s t i c i t y  
i n  combination with geometric nonlinearity.  

The second type of analysis for  which the treatment of 
p l a s t i c  e f f e c t s  i s  most s ign i f icant  i s  t h a t  of localized regions 
of a larger  s t ruc tu ra l  system i n  which yielding may occur as a 
r e s u l t  of stress concentration. This might apply, for  example, 
t o  the region surrounding a fastener o r  cutout, o r  a t  junctures 
between s t ruc tu ra l  components, A f a i l u r e  i n  such a localized re- 
gion may r e s u l t  i n  the s t ruc tu ra l  inadequacy of a larger  over-all  
system. The present methods are par t icu lar ly  w e l l  sui ted to  such 
analysis owever, f o r  an accurate description of the p l a s t i c  
behavior of a s t ruc tu ra l  component the present methods, as de- 
veloped, require a more thorough understanding of i ne l a s t i c  mate- 
r i a l  behavior. The pr incipal  area i n  which deficiencies s t i l l  
remain is  tha t  of const i tut ive re la t ions  f o r  material properties,  
Although a basic understanding of the macroscopic behavior of 
s i m p l e  s t ructures  i n  the p l a s t i c  range has been a t ta ined  by the 
application of avai lable  p l a s t i c i t y  theories,  these theories are 
s t i l l  rather crude and l imited i n  the i r  appl icabi l i ty .  In addi- 
t ion  to  a need for  the refinement of theories of time-independent 
p l a s t i c i t y  for  i n i t i a l l y  isotropic  materials subjected to  mono- 
tonic loading and small s t r a ins ,  there i s  a need for  the fur ther  
development of p l a s t i c i t y  theories t o  take proper account of i n i -  
t i a l  anisotropy, time-dependence, cycl c loading including stress 
reversals in to  the p l a s t i c  range, and arge s t r a ins  
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While these deficiencies inevitably raise questions concern- 
ing the accuracy of r e s u l t s  obtained by finite-element p l a s t i c  
analysis,  we do not believe tha t  t h i s  should inh ib i t  the develop- 
ment of such methods and associated computer programs, A s  i m -  
proved const i tut ive re la t ions  become available,  it should be 
possible to  incorporate them readi ly  in to  exis t ing methods and 
programs 
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A discussion of some of the p l a s t i c i t y  re la t ions  used i n  
developing the methods presented i n  this report  must begin by 
specifying the i n i t i a l  yield condition tha t  defines the e l a s t i c  
l i m i t  of the material. En a l l  cases of multiaxial stress, the 
von Mises yield function, which describes a smooth surface i n  
stress space snd can be represented by a s i m p l e  matheIIEatica.1 
function, i s  chosen as the i n i t i a l  yield condition. With con- 
s iderat ion l imited to  plane stress s i tua t ions  F 
the von Mises yield function i s  represented as an e l l i p so id  i n  
stress space, given by 

(az= T ~ ~ = =  T = O), 

2 2 2 2 f ( o . . )  = ci - ci ci + ci 4- 32 - (3 = 0 
13 X X Y  Y XY 0 

where cio i s  the yield stress i n  tension, 

Describing the p l a s t i c  behavior of a material requires addi- 
t iona l  information i n  the form of a const i tut ive r e l a t ion  between 
increments of p l a s t i c  s t r a i n  on the one hand and s t r e s s  and 
stress increments on the other ,  T h i s  coaskitutive re la t ion ,  
termed the flow ru le ,  i s  based on Drucker's psstu ate fo r  work.- 
hardening materials (Ref. 44) (For a discussion of t h i s  postu- 
l a t e  and the conditions necessary for i t s  sa t i s fac t ion ,  see Ap- 
pendix A of Ref. lie) The flow ru le ,  represented in tensor form, 
i s  wri t ten here as 

where deij i s  the increment of p l a s t i c  s t r a i n ;  f (aij9aij)  
represents the loading function, used t o  determine subsequent 
yielding from some p l a s t i c  state; i s  a measure of the de- 
gree of work hardening; and d h  i s  a posi t ive scalar quantity. 

a i j  

Having selected a yield condition and ~ B Q W  ru l e ,  WE! must now 
choose a function tha t  w i l l  e s tab l i sh  conditions f o r  subsequent 
yielding from a p l a s t i c  state. 
pends on the ease with which i t  can be applied i n  the chosen 

Choice of a hardening mXe de- 
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method of analysis as w e l l  as on i t s  capabi l i ty  of representing 
the ac tua l  hardening behavior of s t ruc tu ra l  materials 
more, fo r  some cases of i n t e re s t  i n  t h i s  report ,  the hardening 
r u l e  should be capable of t rea t ing  the Bauschinger e f f e c t  ex- 
h ib i ted  during reversed p l a s t i c  deformation. 
together with the necessity of maintaining mathematical consis- 
tency with the yield function, cons t i tu te  the c r i t e r i a  f o r  f i n a l  
choice of a hardening ru l e .  An appraisal of some of the harden- 
ing ru l e s  avai lable  (Ref. 11) indicates tha t  the kinematic 
hardening theory due to  Prager (Refs. 21 and 22) and modified by 
Ziegler (Ref. 23) s a t i s f i e s  these c r i t e r i a .  The hardening be- 
havior postulated i n  t h i s  theory assumes tha t  during p l a s t i c  
deformation the loading surface t rans la tes  as a r i g i d  body i n  
stress space, maintaining the s ize ,  shape, and or ientat ion of the 
yield surface., 
of the loading surface, kinematic hardening theory predicts an 
ideal  Bauschinger e f f e c t  for  completely reversed loading condi- 
t ions;  i .e. ,  the magnitude of the increase of yield stress i n  one 
direct ion r e s u l t s  i n  a decrease of y ie ld  stress of the same mag- 
nitude i n  the reverse direct ion.  

Further- 

These requirements, 

A s  a consequence of assuming a r i g i d  t rans la t ion  

An ideal  Bauschinger e f f ec t ,  as predicted by kinematic 
hardening, can be expected to  give, a t  best ,  an admittedly s i m -  
p l i f i e d  approximation of the actual  behavior of s t ruc tu ra l  metals 
under cycl ic  loading. Experiments have shown tha t  subsequent 
yield surfaces are more complex to  describe than as a mere trans- 
l a t ion  of the or ig ina l  surface, In view of the current state of 
the a r t  of p l a s t i c i t y  theory, howeverg the authors believe t h a t  
kinematic hardening represents the s i m p l e s t  theory capable of 
predicting the essent ia l  features  of cycl ic  p l a s t i c  behavior. 

An i l l u s t r a t i o n  of kinematic hardening, as applied i n  con- 

The y ie ld  surface and loading surface are 
junction with the von Mises yield curve i n  the 01, 02 plane, i s  
provided i n  Fig. 75. 
shown i n  t h i s  f igure for  a s h i f t  of the stress state from point 1 
t o  point 2 .  
surface by a i j ,  w e  may represent the loading function f i n  
the form 
as 

Denoting the t rans la t ion  of the center of the yield 

the subsequent yield condition i s  given. f ( o i j  - a i j )  ; 

Thus the von Mises yield condition fo r  plane stress can be wit- 
ten as follows, t o  represent the Subsequent yield condition: 
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-2 2 -2 - - 
f (a i j , a  ) = CT - a o + o + 3y2 - 0 = 0 

ij X " Y  Y "Y 0 

where 

a = a  - a  i j  i j  i j  

The increment of t rans la t ion  of the loading surface d a i j ,  
as given by Ziegler i n  Ref. 23, i s  computed a t  each loading s t e p  
and s u m d  t o  determine the t o t a l  t ranslat ion.  Zieglerj s modifi- 
cation of Prager's hardening r u l e  is  concerned with the assump- 
t ions associated with determining the magnitude and direct ion o f  
the increment of t rans la t ion  of the loading surface. Specifi- 
ca l ly ,  it i s  assumed t h a t  
vector connecting the center of the loading surface to  the in- 
stantaneous stress state i n  stress space. The magnitude of d a i j  
i s  determined from the condition tha t  the stress state must re- 
main on the t ranslated loading surface during p l a s t i c  deforma- 
t ion.  Additional d e t a i l s  associated with determining the trans- 
l a t ion  of the loading surface are given i n  Ref * 11. 

d a i j  i s  directed along the radius 

An expression for  the sca la r  factor  dh, appearing i n  the 
flow r u l e  of E q .  (A.2) , i s  given i n  Refs. 11 and 23 and i s  re- 
wr i t ten  here as follows: 

where c i s  a parameter characterizing the hardening behavior of 
the material. A procedure fo r  determining t h i s  parameter, d i f -  
fe ren t  from the one presented i n  f 11, is discussed below. 

Substi tuting E q s ,  (A.4) and ( .5) i n to  Eq. (A.2) yields the 
following e x p l i c i t  expressions f o r  the p l a s t i c  s t r a i n  increments: 

dE x = (A 6a) 
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2 M3M1dox 9 M M do i- M3dzXy 3 2  Y 
D 

where 

and 

- -  
D = (5;; - 80 0 + 502 4- 36T2 ) 

" Y  Y XY 

If w e  replace d o i j  by A O i j  and dEij by A E i j ,  

E q s .  (A,6) can be wr i t ten  i n  a l inear  incremental matrix form 
re la t ing  p l a s t i c  s t r a i n  and stress increment, as, 

1 - A €  - 
Y 
I? 

Ayxy 

2 lM3 

Thus the above l inear  incremental re la t ionship can be compactly 
wr i t ten  as 

b€} = [ c ]  J D 
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Equations (Ag5) through (A,8)  pertain to  e las t ic ,  s t r a in -  
hardening behavior e The treatment of e l a s t i c ,  ideal ly-plast ic  
material behlavior requires implementing the tangency condition'' 
associated with such behavior, i .e .  , t ha t  the incremental stress 
vector be tangent t o  the yield surface during ideal ly-plast ic  
flow. This condition provides a l inear  r e l a t ion  among the var i -  
ous components of stress increment. It can be expressed as fo l -  
lows ." 

I 1  

If  w e  set doi j  = A O i j  andrexpress nox i n  terns of Aoy and 

ATxy9 Eq. (A,9)  can be represented i n  matrix form as 

A'X 

A 0  - 
.Y 

AT 
XY 

where 

-m2 0 -ml 

0 - 1  0 

0 0 1 

n o  
X 

no 
Y 

XY 
A T  

(A e l o )  

= (oy - $ ox)/ (ox - - 
ml 2 Y  

The coeff ic ient  matrix of Eqe ( . l o )  i s  represented by the matrix 

stress increment can be wr i t ten  as 
Thus the above l inear  re la t ionship among the components of 

(A e 11) 
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The treatment of e l a s t i c ,  ideal ly-plast ic  material behavior 
a l s o  requires implementing the normality condition on the s t r a i n  
increment vectorg thus providing a l inear  r e l a t ion  among the 
various components of p l a s t i c  s t r a i n  increments. This condition 
i s  represented by the flow r u l e  of Eq. (A.2) and can be expressed 
as follows: 

If w e  set 
matrix r e l a t ion  tha t  e x i s t s  among the components of p l a s t i c  
s t r a i n  increment. 
A c X J  

d € i j  = A c i j ,  Eq. (A.12) leads to  the incremental 

If w e  express A e y  and AyZY i n  t e r m s  of 
t h i s  matrix r e l a t ion  i s  given by 

A 

A €  
Y 
P 

AyXJ? 

1 0 0  

0 0  ml 

m2 0 0  

Tbe coeff ic ient  matrix of EqD (A.13) 

A €X 

AYP 

A €  
Y 

XY 

(A. 13) 

is represented by the matrix 
[E] .  
lowing form, 

Thus, the above relat ionship may be represented i n  the fo l -  

(A e 14) 

It i s  apparent from Eqs. (A.9) and (A.12) tha t  only two of 
the three components of stress increment and only one of the 
three components of p l a s t i c  s t r a i n  increment are required to  ob- 
t a i n  the remaining components. Thus only three of the s i x  quan- 
t i t ies  are independent variables.  The increments of stress and 
p l a s t i c  s t r a i n  can now be wr i t ten  i n  t e r m s  of a vector, 
representing these independent quant i t ies ,  a r b i t r a r i l y  chosen as 
AcX, nay, and A - T ~ ~ :  

{Am}, 
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A €  
X 

AT 
"Y 

(A e 15) 

Because of the s t ruc ture  of the matrices [E] and [ E ] ,  
Eqs. ( A . l l )  and (A.14)  may now be rewrit ten i n  the following 
form, 

and 

(A 16) 

(A. 17) 

The strain-displacement re la t ions  tha t  are a necessary in- 
gredient i n  the analysis  are based on kinematic considerations 
and are independent of material properties.  However, since they 
involve t o t a l  s t r a i n  ( e l a s t i c  plus p las t ic )  , the solution proce- 
dure requires an incremental r e l a t i o n  between stress and t o t a l  
s t r a i n .  

For both e las t ic ,  strain-hardening and e l a s t i c ,  ideally- 
p l a s t i c  material behavior, the increment i n  t o t a l  s t r a i n  a t  a 
node can be wr i t ten  as the sum of an e l a s t i c  and a p l a s t i c  com- 
ponent, represented as (Ace> and ( A € ] ,  respectively, as f o l -  
lows 9 

(AD 18) 

The increment i n  e l a s t i c  s t r a i n  i s  re la ted  to  the stress incre- 
ment [no} by means of Hooke's a w e  For plane stress t h i s  rela- 
t ion may be wr i t ten  as 
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1 - v  0 

- v  1 0 

0 0 2 ( 1  + v 

If  w e  represent Eqe (A.19) as 

then Eq. (A.18) may be wr i t ten  in  the form 

(A 19) 

(A 20) 

(A 21) 

For an e l a s t i c ,  strain-hardening material w e  make use of the 
l inear  incremental r e l a t i o n  between p l a s t i c  s t r a i n  and stress, 
i a e e 9  E q .  ( A . 8 ) ,  t o  obtain the incremental r e l a t ion  between stress 
and t o t a l  s t r a i n  given i n  the following equation: 

(A a 22) 

where 

1 = + [ G I  

It should be noted that there i s  no unique stress increment 
corresponding to  a given p l a s t i c  s t r a i n  increment vector. There- 
fore  the matrix [ C ]  i s  singular,  ever, the matrix [ 
defined i n  E q .  .22) w i l l  possess an inverse, thereby providing 
the necessary coeff ic ients  r e l a t ing  the stress increment t o  the 
increment of t o t a l  s t r a i n .  

For an e l a s t i c ,  ideal ly-plast ic  material w e  require a rela- 
t i on  between the vector (Aw} and the increment of t o t a l  s t r a i n .  
This is  obtained by subst i tut ing E q s ,  (A,lQ) and (A.17) i n to  
Eq, (A.21) to yield 
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(A 23) 

where 

rdening Coefficient 

The incremental const i tut ive r e l a t i o n  between p l a s t i c  
s t r a ins  and stresses , shown i n  matrix form i n  E q .  (8.7) , requires 
knowledge of the i n e l a s t i c  behavior of the material i n  a state of 
multiaxial  stress, A s  s ta ted  above, fo r  the case of kinematic 
hardening t h i s  behavior i s  characterized by the parameter c,  
appearing i n  Eq .  (A.5) e 

Since su f f i c i en t  experimental information i s  lacking on the 
hardening behavior of s t ruc tu ra l  materials under multiaxial 
stress states, the material properties generally used i n  inelas- 
t i c  analysis are determined from simple t ens i l e  o r  compressive 
t e s t s  of samples of the material. If  the s t ructure  is i n  a state 
of uniaxial  stress, the s t r e s s - s t r a in  r e l a t ion  i s  ident ica l  t o  
tha t  obtained. from tension or  compression tests a The hardening 
coeff ic ient  c can then be taken simply as the slope of the 
s t ress-versus-plast ic-s t ra in  curve a t  the current stress leve l .  
In the general case of multiaxial  stress with nonlinear s t ra in-  
hardening, determining the hardening coeff ic ient  i s  much more 
complicated, It can be expected that  c w i l l  vary not only with 
stress l eve l  but a l s o  with the r a t i o  of various s t r e s s  components 
t o  one another, i e e m J  with the location of the stress state on 
the loading surface. A procedure to  determine the multiaxial 
hardening coeff ic ient  c i n  the kinematic hardening l a w  w a s  pre- 
sented i n  Ref. 11, This procedure has two shortcomings; v iz . ,  
the value obtained for  c i s  not invariant with respect t o  a 
ro ta t ion  of the coordinate axes, and hydrostatic stress i s  not 
properly taken in to  account. 
overcomes these shortcomings, This method i s  based on the 

(Ref. 65);  i o e c ,  

An a l te rna t ive  method outlined here 

sgood representation of a uniaxial s t r e s s - s t r a in  curve 

(A * 24) 
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where n i s  a s ter giv 

n = =  3 (A e 25) 

e is  the t o t a l  s t ra in ,  i s  the slope of the l inear  portion of 
the s t r e s s - s t r a in  curve, and a0,7 are  the stresses 
a t  which the curve has secant moduli of Q,7 and 0.85 E, re- 
spec t ive lye  

W e  recognize the nonlinear term i n  Eq. (A.24) as the plastic 
s t r a i n  and use i t  to  determine the inverse of the hardening co- 
e f f i c i e n t  

n-1 
lAI 

7E ‘0.7 c 

where E, the p l a s t i c  s t r a in ,  i s  equal t o  

_I 3a 
7E 

n-l  0 
I___ 

(5 
c 

0 , 7  

(A e 26) 

The s ingle  value of e to  be introduced in to  E e (A.5) f o r  
multiaxial  stress is  computed by assuming tha t  there e x i s t s  a 
Ramberg-Qsgood representation re la t ing  e f fec t ive  stress to  effec-  
t ive  s t r a in ,  i.e, , 

- 
(5 

I_ 

0.7 0 

n-l  
(A 2 7a) 

ere 

(A. 27b) 
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and 

1 
2 
- 

2 2 
X X Y  Y XY 

I 

'=(a - 0 '  + o  + 3 2 )  . (A 2 7c) 

The inverse of the hardening coeff ic ient  can now be wr i t ten  as 

(A 28) 

- 
where E ,  the plastic component of the e f fec t ive  s t r a i n ,  i s  
equal t o  

- n-1 - 
30 p.2L-I 
7E '0.7 

It should be noted tha t  use of an e f fec t ive  s t ress-effect ive 
s t r a i n  r e l a t i o n  i s  usually associated with the isotropic  harden- 
ing theory of p l a s t i c i t y ,  i n  which the various components of 
s t r a i n  increment are determined from an ef fec t ive  s t r a i n  incre- 
ment. In our analysis,  however, the components of s t r a i n  incre- 
ment are r e l a t ed  to  the stress increments through const i tut ive 
re la t ions  determined from kinematic hardening theory. The effec- 
t i ve  s t ress -ef fec t ive  s t r a i n  r e l a t ion  and the def ini t ions of 
these quant i t ies ,  presented i n  Eqs. (A.27), are used merely t o  
define the hardening coeff ic ient  of E q .  (A.28). 

The Ramberg- sgood parameters E ,  00.7, and n used i n  
Eqs. (A.27) are obtained from a uniaxial  s t r e s s - s t r a in  curve for  
the material; therefore i n i t i a l  isotropy of the material is  as- 
sumed e 

It can be seen tha t  t h i s  approach takes in to  account the 
f a c t  t h a t  the hardening coeff ic ient  var ies  with the location of 
the stress point on the loading surface and tha t  i t  reduces to  
the correct  value i n  the special  case of a s ingle  nonzero stress 
component 
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The value of the hardening coeff ic ient  given i n  E q s  (A.28) 
applies to loading s i tua t ions  f o r  which the stress state remains 
i n  a f a i r l y  localized region on the y ie ld  surface. Further gen- 
e ra l i za t ion  of t h i s  equation i s  necessary t o  accommodate cases of 
e l a s t i c  unloading and subsequent reloading in to  the p l a s t i c  range 
i n  which the stress state s h i f t s  t o  a d i f fe ren t  region on the 
loading surface e This generalization i s  ident ical  t o  tha t  asso- 
c ia ted with the use of the previous hardening coeff ic ient  of 
Ref. 11. Basically, the assumption i s  tha t  the shape of the in- 
e l a s t i c  portion of the s t r e s s - s t r a in  curve i s  the s a m e  on re- 
versed yielding as on i n i t i a l  yielding. 
ing coeff ic ient  I i s  thus the same as tha t  shown i n  E q ,  (A.28), 
with o now wr i t ten  as 

The value of the harden- 

(A.29) 

- 
where a is  the las t  computed value of a prior  t o  unloading 
and reversed loading i n  the p l a s t i c  range, 
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APPE B 

M OF [ B ]  A 

This appendix presents a derivation of the [B]  and [ 
matrices fo r  the six node (LST) t r iangle .  The derivation makes 
use of Eq. (23) ,  wri t ten  here as 

where 

( A P )  i s  the vector of increments i n  applied nodal forces;  

[Ke] i s  the e l a s t i c  s t i f f n e s s  matrix for  the s t ructure  
a f t e r  proper boundary conditions have been taken 
in to  account; 

[AD) is the nonzero nodal displacement vector; 

[K 1 i s  the i n i t i a l  s t r a i n  matrix f o r  the e n t i r e  s t ruc-  
ture;  and 

{ Q E ~ }  is  the vector of nodal i n i t i a l  s t r a i n  increments. 

Equation (B.1) i s  used with the equation f o r  stress increment a t  
the i t h  node wr i t ten  as 

where the elements of the [E] matrix are the usual e l a s t i c  co- 
e f f i c i e n t s  associated wkth the s t r e s s - s t r a in  re la t ions  for  plane 
stress, The vector {Ace> i s  the average e l a s t i c  s t r a i n  incre- 
ment a t  the node. This vector is  defined as the average t o t a l  
s t r a i n  increment i n  the e l a s t i c  range or  the average t o t a l  s t r a i n  
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increment minus the p l a s t i c  s t r a i n  increment i n  the p l a s t i c  re- 
gion as shown i n  Eq. (B.2) e erage values w e r e  used i n  t h i s  
case because the provision of isplacement compatibility a t  nodes 
f o r  the LST t r iangle  does not ensure t h a t  s t r a ins  and, therefore, 
stresses w i l l  be compatible a t  nodes. nce, t o t a l  s t r a i n  o r  
stress from each element adjacent to  a node must be computed and 
then divided by the number of adjacent elements i n  order t o  de- 
termine the average stress or  s t r a i n .  Average t o t a l  s t r a i n  can 
be re la ted  t o  the nodaL displacements of the e n t i r e  s t ruc ture  by 
means of the matrix [Wi] so tha t  

bs) = [Wi] " I  Ad2 
i 1 

Substi tution of Eq. (B.3) i n to  Eq. (B.2) yields  the expression 
f o r  stress increment i n  t e r m s  of the increments of nodal d i s -  
placement and p l a s t i c  s t r a i n  as follows 

Equation (B.4) i s  then assembled fo r  a l l  nodes a t  which stress 
values are desired, t o  yield,  

where [SI i s  the assembled matrix of [E][$i], and [Ed] is  a 
diagonally par t i t ioned matrix consisting of submatrices 
Substi tution of Eq. (B.1) i n to  Eq. (B.5) then yields the desired 
equation for  stress increment, 

[E]. 

b o ]  = [B] AP + [ i l l  
where 



and 

The corresponding def in i t ion  f o r  the matrices [A] and [J] 
shown i n  Eq. (24) of Section 2 are obtained from an equation for  
t o t a l  s t r a i n  increment. Their def ini t ions can be wr i t ten  i n  
t e r m s  of [B] and [HI as 

(B. 7) 

where [Ed]-’ i s  a diagonally par t i t ioned matrix composed of 
submatrices [E]”1- 

It should be noted tha t  the [R] and [HI (or [Jl)  
matrices are formed i n  the present analysis as though a p l a s t i c  . 
( i n i t i a l )  s t r z i n  increment exis ted a t  each node. If  a node is  i n  
the e l a s t i c  range, the p l a s t i c  s t r a i n  increment a t  t ha t  node is  
set equal t o  zero. 
from the elastic analysis  are computed only once. 

In t h i s  manner a l l  the necessary matrices 
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APPENDIX C 

0 1 0  y 2x 0 0 0 0 0 0 O - [ a ] j  0 -  
I 

0 0 0 0 0 0 0 0 1 x 8 2y[---+---- 1 

0 0 1 x 0  2 y O l Q y 2 x 0 ,  0 1 [ a ] -  

INITIAL STEgdaIM STIFFNESS TRIX FOR LST EmmIMT 

( c  * 2) 

The stiffness matrix for the six node plane stress (LST) 
triangle has been derived in Refs, 29, 30, and 5 3 .  This agpen- 
dix gives the initial strain stiffness matrix for the LST tri- 
angle used in the plasticity analysis of membrane stressed struc- 
tures. 
Eq.  (10) , is based on the definitions of the element geometry and 
initial strain assumptions shown in Fig. 2. The integral form is 
rewritten here as follows: 

The derivation of this matrix, given in integral form in 

v J J J  

P 

where [Gp] represents the assumption made for a linear dis- 
tribution of initial strain increment in E q B  ( l o ) ,  and [ W ]  re- 
lates nodal displacement to the element total strain. 

This matrix is based on a quadratic distribution for the in- 
plane displacements and can be written as 

where the matrix [ a ]  relates the coefficients of the poly- 
nomial form f o r  displacement increments, Eg. (401, to the nodal 
displacements, and is written as 
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[a1 = 

0 0 0 0 0 II 
0 2 

2 2 
Xk yk "kYk Xk yk 

2 2 

2 2 

2 2 

1 x  0 0 X 
j j 

Yi 
1 X.r yir x r y . r  Xi r 

1. i i  

Yj j .yj' 
x. r y .  r 

J J  
1 x., 

3 

1 Xk/ 'kr xkrYkr Xkr Yk' 

and the incremental nodal displacement vector is written as fol- 
lows : 

Substituting E q s .  (C.21, (6.31, and (41) into Eqo ( .1) and per- 
forming the matrix multiplication yields 

104 



where the [Ci] matrices i n  Eq. ( .5) are constant matrices of 
order (12 x 9) .  The integration of E q .  (C.5) yields the follow- 
ing f i n a l  form fo r  [E], 

where A i s  the area of the element (xjyk/2), E i s  Young's 
modulus, and h i s  the thickness. 

The nonzero elements of the [ i ]  ( i  = 0 - 5) are given 
below 

ECQ 1 
2,l = 1 

3 , 7  = l.L 

9,l = v 

2,4 = v 

8,7 = I-1 

9,4 == 1 
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Ec, 1 
2,l = 4 / X j  

3,7 = -p/xj 

2,4 = -V/Xj 

4,7 = p 

5,4 = 2 v  
9,2 = v / x j  
9,5 = l / X j  

1094 = 1 

2,2 = l/Xj 

2,5 = V/Xj 

3,8 = p/xj 

5 , l  = 2 

9,1  = -V/Xj  

9,4 = 4 / X j  

10,l = v 
11,7 = 2p 

4,8 = k/xj 

5,6 = 2 v / x  
5,2 = 2 / X j  

10,2 = V/Xj 
j 

10,5 = l / x j  
11,8 = 2p/xj 



k"  and x = X  - 1 - v  IJ-"=------ 
2 j k  

ere v is  Poisson¶s ratio,  
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The i n i t i a l  s t r a i n  s t i f f n e s s  matrices fo r  a beam element i n  
bending alone and f o r  combined bending and membrane loading are 
derived from the assumptions shown i n  Figs. 32 and 33 and are 
given i n  in tegra l  form i n  Eq. (15) e 

The matrix equation defining the f i c t i t i o u s  nodal res tor ing 
forces i n  t e r m s  of the i n i t i a l  s t r a i n  s t i f fnes s  matrix f o r  the 
pure bending of a beamwith a rectangular cross section i s  

where 

I 

Z 
P 

i 

E1 
3 

i 

Z t 

M 

P 
='I 

j 
M 
, j  

c,/ R c2/ R 

-=c1/R -c2/ R 

c5 '6 

20 

s 

Zi(t + Z . )  
2 9 t2 - 

E 

E 

- 
Zi(t + Z . )  

1 
2 + 

2 + t2 - 
60 12 c3 = - 
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C ”  5 

- - - 
5 ( 5  - Zi> (2Zi + t )  2 Zi(t + Zi) 

2 - t  + 12 9 - - 
‘6 20 9 

where P, and represent the f i c t i t i o u s  restor ing force i n  
the lateral  direct ion and moment, respectively; t i s  the half  
thickness of the beam element; and z represents the depth of 
the e l a s t i c - p l a s t i c  boundary. For t h i s  element, a l l  ;Is are 
determined with respect to  the median surface. Other quant i t ies  
appearing i n  Eq. (Del) are defined i n  Fig. 32. 

The corresponding r e l a t i o n  fo r  the case of combined bending 
and membrane stresses i s  shown a s  follows, 

E1 
2 3  a t  

= -  

* 
k12 

k22 
* * 

* * * k24 k;3 k;l * 
k3 1 k3 2 k33 k34 
* * 

“k13 
* * * * 

k54 k53 

’-k32 pk33 -k34 
4 * k52 * k5P 

where 

U 
‘0i 
u 
og 
L 
O i  

L 

E 

E 

€0 j 
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and 
2 

@1 = (q - 2-J 

c3 E -  ZU i ( 3 t  - 2J 

/ a 2  

= - (q - 3 ( 3 t  - 2 2 )  1 / R 



= (it - GL)(t  - 2zL) / Q c5 i 1 

2 . = 2 t  2 * t z  - z  
'6 i i 

-U 
i C8 = z 

c9 = (;; - ;L)/J? 1 

The quant i t ies  P, and P, represent the f i c t i t i o u s  re- 
0 i 3 

storing forces i n  the a x i a l  direct ion.  H e r e  a l l  E ' s  are mea- 
sured with respect t o  the upper surface of the beam. All other 
quant i t ies  appearing i n  E q .  (D.2) are defined i n  Fig. 33.  

The i n i t i a l  s t r a i n  matrix i n  Eq. ( ,2) must be modified fo r  
the treatment of problems i n  which the membrane s t r a i n  generated 
is  su f f i c i en t ly  large to  cause the e n t i r e  cross section of the 
beam to  go p l a s t i c ,  with s t r a i n s  a t  both the upper and lower 
surface being of the same sign. For these cases there i s  no 
point within the thickness a t  which the p l a s t i c  s t r a i n  is zero. 
Consequently, the functional form of the p l a s t i c  s t r a i n  d is t r ibu-  
t ion must be modified to  account fo r  t h i s  e 

oosing 



r e t a ins  the assumption of a l inear  p l a s t i c  s t r a i n  d is t r ibu t ion  
through the thickness, while allowing fo r  a continuous develop- 
ment of the p l a s t i c  region. 

(z - -L z ) + Ri(2t L - Z) L -  
-L E -  

2 t  - z 

(D e 3b) 

(;)€; e 

J 

+ i 
I 2 t  

In these assumed forms, 

U L  
€ . / E i  1 

0 

-L 
" Z  

i f  

i f  

i f  

i f  

The i n i t i a l  s t r a i n  s t i f f n e s s  

L U  
E i / E i  < Q 

( D . 4 )  

U L  
€ . / E i  > 0 - 1 

U L  
E i / E i  < 0 . 

matrix [k"] reta,ns the same 
c10 form as tha t  i n  Eq. ( D . 2 ) ,  but the coeff ic ients  

now contain the fac tors  RiJ  R j  Riy R j  

R i  = R = 0, the c i l s  reduce t o  those given above. 

~ 1 9  c2, 
Indeed, when RY = RY = 

L U 
j 
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APP E 

e current analysis of beam and p l a t e  s t ructures  under 
combined lateral  and in-plane loading i t  is  necessary to  locate 
the depth of the e l a s t i c -p l a s t i c  boundary a t  nodes and to  cal-  
culate  the value of lateral loads a t  which yielding begins, A 
procedure to  determine these quant i t ies  i s  outlined below e 

For plane stress, the von Mises yield condition reduces to  

Since the beam o r  plate  i s  e l a s t i c  through i t s  thickness u n t i l  
the yield condition is  sa t i s f i ed ,  w e  can w r i t e ,  f o r  combined 
bending and membrane stress i n  the e l a s t i c  range, 

where for  a p l a t e  

a 2  
dY2 

2 e T = = - - + ? ( G )  &v 1 aw - z - - ~ ? z  
Y 3Y 

2 au av aw aw a W  - * - + - - - 22 - T 
yxg ay ax ax ay dxdy 

and z i s  measured 
1 represents the 
1 represents the 

with respect t o  the middle surface. Here 
membrane contribution to  the s t resses  and 
bending contribution. The quantity p i n  

115 



E q .  (E.2) is as yet  undefined, but it represents the functional 
form of the var ia t ion  of the bending s t r a ins  through the thick- 
ness. Substi tuting E q o  (E.2) i n to  Eq.  ( 

1 - - ( N M  + N M )  
I x x  Y Y  x y x y  2 y x  X Y J  

- -  1 - -  - -  - -  
+ 2 p N M  r- - + N M  + 3 N  M 

- -  
+ N 2 + s 2 + 3 f i 2  - N N  

X Y XY X Y  

L e t  

- -  
A = i 2 + S + 3 E 2  - M M  

X Y XY X Y  

- -  1 - -  - -  - -  
B = N M  + N M  9 3 %  E - - ( N M  + N M )  

x x  Y Y  X Y X Y  2 Y X  X Y  

- -  
C = N 2 + N 2 + 3 N 2  - N N  e 

X Y XY X Y  

For combined membrane and bending loads, l e t  p = t - z ,  where 
z i s  measured with respect to  the upper surface of the p l a t e .  

The location of the elastic-plastic boundary through the 
2 - 

thickness occurs a t  t ha t  point, defined as z ,  where J2 = aoe 
That condition can be expressed by the following quadratic equa- 
t ion: 

2 2 Ap + 2 B p + C - a  S O ,  
0 

Solving fo r  p, w e  obtain 

1 ne; 



or 

(E e 6b) 

- 
This gives two values of z ,  correctly indicating the presence 
of two elastic-plastic boundaries, which must satisfy the in- 
equality 0 < Zu < ZL < 2t. (Recall that Z is measured with 
respect to tKe upper surface for combined bending and stretch- 
ing e )  

- - 
To determine expressions for the Nt s and MI s , we combine 

the s tress-s train and strain-displacement (neglecting nonlinear 
terms in displacements) equations. 

E 
1 - v  

G =  2 '& [ax + (t - z)w,xx + v (* dY + (t - .)W.,,] X 

Therefore, comparing E q s  e (E.7) and (E.2) , we see that 

Substitution of these quantities into .5) yields the fol- 
lowing expressions fQr A, B, and C. 



2 2 2 
- w ,  + 3 w  

YY ,x37 
J (w, 2 1 xx A =  

(1 + Y )  

+ w >  
v 

2(w3xx YY 
+ w9xxwJ + 

YY (1 - v )  

(E.9) 2 (1 - Y 4- v )w, 2 
xx YYJ 

+ 2.d- L(1 - 4 Y  + v )w, a Y 1  2 

- - - 
In the case of pure bending, Nx = Ny = Nxy = 0 ,  Also, 

p = - z ,  with z measured from the middle surface. Therefore, 
B = C 0, and .6b) reduces to: 

(E 10) 

and so indekd w e  g e t  two equal roots  of opposite sign, indicating 
symmetry wikh respect  t o  the median surface.  

load a t  whikh p l a s t i c  behavior i s  i n i t i a t e d ,  

re 0 < IzI < t. - I_ 

In any' p l a s t i c i t y  problem i t  i s  necessar to  compute the 
o r  combined bending 

i 
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and membrane problems, i t  i s  assumed tha t  the membrane load i s  
applied f i r s t  ( the p l a t e  may not  go p l a s t i c  i n  membrane loading 
alone) and then the Lateral load i s  increased to  the value tha t  

s i n i t i a l  y i e ld i  e p l a t e ,  Consequently, the stresses 
e upper and lowe e a t  i n i t i a l  yielding can be wr i t ten  

as 

(E 11) 

where k i s  the lateral  load required to  cause i n i t i a l  yielding, 
2 iOe . ,  J 2  = o0; and the superscr ipt  (1) indicates  curvatures 

due to  a u n i t  ateral load. 

Thus, i f  w e  l e t  p = * k t  i n  Eq. (Ee6a), we ge t  

(E 12) 

Therefore, the c r i t i c a l  lateral load necessary to  cause i n i t i a l  
yielding i s  

(E e 13a) 

i f ,  a t  the e r i t i c a  
face, and 

node, yielding occurs f i rs t  a t  the upper sur- 

(E e 13b) 
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i f ,  a t  the c r i t i c a l  node, yielding occurs f i r s t  a t  the lower sur- 

posi t ive value. 
f the two roots  f o r  each s i tua t ion  w e  take the smallest 

Sometimes i t  i s  more convenient to  express the quant i t ies  
A, B, C in  Eq. (E.9) i n  t e r m s  of the membrane and bending 
s t r a i n s  a t  the lower surface e Multiplying and dividing appropri- 
a te  t e r m s  i n  Eq. (E.9) by -t w e  get:  

(E. 14) 

where the subscripts b and m r e f e r  t o  bending and membrane 
s t r a ins ,  respectively.  In  the qase of bending alone, B = C 3 0 
and 
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NGU S 

This appendix presents a summary of per t inent  information on 
triangular coordinates and several  manipulations performed with 
them. It i s  included t o  c l a r i f y  several sections i n  the report  
and appendices and to  define ce r t a in  quant i t ies  used extensively 
i n  the tex t .  The discussion follows closely tha t  given i n  
Ref. 42,  

The coordinates - -  of a plane t r iangle  1-2-3 (see Figo 76) 
lying i n  the x-y plane of a global r t e s i a n  coordinate system 

"local global" Cartesian system x, y, z with axes parallel t o  
the global axes x, y, z ,  respectively, and i t s  or ig in  located 
a t  the centroid "c" of the t r iangle .  The global coordinates of 
the centroid are: 

- - -  - - 
x 9  y9 are GI9 ?I>, 29 Yz) 9 and ci;?, Y3) * Define now a 

- - _ L  

- - x = 3(x1 1 -  + x2 + x3) 
C 

The local  coordinates of the nodes of the t r iangle  are: 

- - 
x = x  - x  
i i C 

i =  1, 2, 3 0 

ence w e  see that  

x + x 2 + x 3 = 0  

Yp + Y2 + Y3 = 0 

1 



d the area of the t r iangle  i s  

1 
A = 2 /  x2 y2 

Any point P(x, y) within the t r iangle ,  when joined to  the 
ve r t i ce s  by s t r a igh t  l i nes ,  divides it in to  three subtriangles 
(see Figo 77) 1) A2, Ag 
t r iangles ,  and define the three area coordinates of P as 

be the areas .of these sub- 

i = l ,  2, 3 , i A 
wi = A 

where the subscript  i r e f e r s  to  the vertex of the t r iangle  
opposite the subarea Ai. Now A = A1 + 8 2  3- A3 i s .  the t o t a l  
area of the t r iangle ,  and as a r e s u l t  

Lu + o  + o  = l e  1 2 3 

The equation, ~ u i  = constant, represents a l i n e  parallel t o  
the s ide  opposite vertex i. The coordinates of verbex i are 
m i  .P' 1, oj = ~uk = 0 ( i  

The Cartesian coordinates x, y are re la ted  to  the area 
coordinates by the matrix equation 

1 

X 

Y 
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The inverse relat ionship may be wr i t ten  as 

1 
- 2 A  
- -  

?2'3 - "3'2 3 - " a .  

"3y1 - "lY3 y3 - y1 - x3 

1 - x  
, 59 - x2y1 y1 - '2 2 

1 a 1 bl 

I 2A3 b3 a3 

1 

x 

Y 

1 

X 

Y 

Mote here that, from the def ini t ions,  

a + a  + a 3 = Q  1 2 

b l + b 2 + b 3 = 0  

The def in i t ion  of these area coordinates ai makes the integra- 
t ion of polynomial t e r m s  over the tr iangular region extremely 
s imple .  These integrations are necessary f o r  the formation of 
the s t i f fnes s ,  i n i t i a l  s t r a i n  s t i f fnes s ,  and i n i t i a l  stress 
s t i f fnes s  matrices. The integration of PO ynomials expressed i n  
area coordinates i s  independent of the shape of the t r iangle  and 
can be wr i t ten  as a m u l t i p l e  of the area; i e e e ,  

n 

= PA. 

where i, j ,  k represent any pe mutation of 1, 2, 3. 
formula f o r  p is  given as 

(F 0 l o )  

In Ref, 66, 
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p - 2  e (Fa  11) 

Using t h i s  re la t ionship and considering the local  Cartesian 
coordinate system located a t  the centroid of the t r iangle ,  w e  can 
define 

B =  0 (F 12) 
PQ 

But 

+ x u ,  + x w  
= xlu,l 2 2  3 3  

(F e 13) 
y = y w  + y u ,  + y c u  1 1  2 2  3 3 "  

Substi tuting EQ. (F .13 )  i n to  E (F,12) gives 

Succinct forms fo r  t h i s  expression, using Eqs. (F .3 )  and (F.11) 
fo r  n = p + Q, ranging from 0 through 6 ,  are given i n  

dix I 
ef.  42. A general formula f o r  a l l  orders i s  derived i n  

and i s  repeated here: 

P = 2A 
P4 
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APPEND 

The i n i t i a l  s t r a i n  s t i f fnes s  matrices fo r  a rectangular 
plate element i n  pure bending and i n  combined bending and mem- 
brane loading have been derived from the assumptions shown i n  
Fig. 34 and defined i n  in tegra l  form i n  Eq. (15). For bending 
alone, the i n i t i a l  s t r a i n  s t i f f n e s s  matrix can be wr i t ten  as: 

L( E - 
2 3 ( 1  - v 

,j) 

(16 x 12) 
i Gd 1 

(12 x 12) 

f 1 
E x l l  

Y l l  
E 

P 
Yxyll 

x21 E 

x12 E 

x22 E 

9 2  
E 

= Ck * J  ],E0) * 

ere P, and the 9s represent the f i c t i t i o u s  restor ing 
force i n  the lateral. d i rect ion and f i c t i t i o u s  moments, respec- 
t ive ly .  The matrix [ Gd ] is  a diagonally parti t ioned array 
with 3 x 3 submatrices given by: 
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[ G I  = 0 a 
b 
I v a  b 

0 0 1 - v  

* 

The coeff ic ients  of the t e r m s  i n  (i,j) are given i n  
Table I; e . g e ,  

L(1,l) = (-7/20)(2t 2 ) + (4/15)till 4- (1 / lZ) t~12 + (0)tg21 

(13/2100~ z1 (-11/1050) z 

As i n  the case of pure bending of a beam, a l l  
sured with respect t o  the median surface. All other quant i t ies  
appearing i n  Eqe ( *I) are defined i n  Fig. 34. 

i t s  are m e a -  

The corresponding r e l a t ions  fo r  the case of a rectangular 
elemena; under combined bending and membrane forces are as fo l -  
lows: 
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Pxl l  

px2 1 

px12 

Yll 
P 

Y21 
P 

Y22 
P 

----t----- 

e 

U 
x l l  
U 

PU 

E 

Y l l  
E 

Yxyl 
E U  x21 

E U  x12 
U 
x22 
PU 

E 

yxy22 

. - - - -  

L 
x l l  
L 

PL 

L 
x21 

E 

Y l l  
E 

Yxyll 
E 

0 

L 
x12 E 

e 

L 
x22 E 

* 

6. 

PL 
yxy22 
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where 

[kYlI = 

[k;21 = 

The numerical coeff ic ients  of the t e r m s  i n  L!(i,j) 
Lk(i,j) used i n  forming [kTl] and [k:~] are the same as 
those i n  the L ( i , j )  fo r  pure bending shown i n  Table 1. How- 
ever, the t e r m s  with which they are associated change as follows: 

and 

Pure Bending 

L(i,j) 

2t2 

till 

Bending and Membrane Loading 

Lb U (i, j 1 <(i,j) 

0 
-3tzll -U 

-3tzx2 -U 

-3tz21 -U 

-3tq2 

2 

2 

-U 
zll 

5 2  
-U2 
22 1 

-U 

$ 
22 
-u -u 
211212 

%1221 

211222 

212221 

212222 

22 122 2 

-u -u 

-u -u 

-u -u 

-u -u 

-u -u 

2 -2t 

t q l  

t:;2 

tiL 

t GL 

-L2 
-zll 
-L2 
-12 
-L2 

-2 1 

-22 

-51212 

-211221 

-211222 

-212221 

-212222 

-21222 

21 

22 

2 -L 

-L -L 

-L -L 

-L -L 

-L -L 

-L -L 

-L -L 
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* 
The membrane submatrices, [ 1 1  and [k221, of the i n i t i a l  
s t r a i n  matrix may be 

- L1l 

- vL22 

a 

b 

-- L3 1 
a 

- ”‘42 
b 

-- ‘51 
a 

v L 
b 

-- L7 1 
a 

I_ ’JL8 2 
- b  

62 
_I__ 

where I-I. 

The 
Li(i>j) 

- “L1l 

L22 - 

a 

b 

-- ‘jL3 1 
a 

__. L42 
b 

“L51 - 
a 

L6 2 
b 
- 

“L71 - 
a 

- L8 2 
b 

llL13 - 
b 

_I L23’ 
a 

L33’ -- 

I_ ‘43’ 

-- L53’ 

L531 -- 

- ‘73’ 

b 

a 

b 

a 

b 

- L8 3’ 
a 

- 1 - Y  

2 ”  

determined by 

- L14 
a 

‘>L25 

I L34 

_I ‘45 

- ‘54 

.;L65 

- L74 

- 
b 

a 

b 

a 

- 
b 

a 

- vL85 
b 

- ”‘14 
a 

- L2 5 
b 

‘GL34 

_. L45 

_I 

a 

b 

,; L 
a 

-- L6 5 
b 

54 - 

- .’L74 
a 

- L8 5 
b 

- L16’” 
b 

-- L2 6+ 
a 

L36;1 - 
b 

‘46’ - 
a 

-- ‘56’ 
b 

-- L6 6’ 
a 

- L7 6’ 
b 

- ‘8 6’ 
a 

using the 

L17 - 
a 

7L28 

-- L3 7 

“L48 

-- L57 

- 
b 

a 

-- 
b 

a 

- ’ L68 
b 

- =77 
a 

’* L8 8 
b 
- 

form: 

- L19’ 
b 

IL L2 9’ 
a 

-- L39’ 

- L49’ 

-- L59’ 

b 

a 

b 

__ L6 9’ 
a 

- L7 9.” 
b 

- L8 9’ 
a 

- ‘110 
a 

“L211 
3 

- L310 
a 

411 
b 

- L510 
a 

--- “!L611 
b 

L7 10 
a 

811 
b 

‘i L 

- 

‘> L - 

_.__ vL1lo 

L211 - 

a 

b 

- ”L310 
a 

- L411 
b 

.jL5 10 
a 

L611 - 
b 

7 10 
a 

-- ‘811 
b 

‘i L - 

- 
_I_ L112’ 

-- L2 12’ 

b 

a 

- L3 12: 
b 

L4 1 2‘L 
a 

- L512‘L 
b 

‘6 12‘ 
a 

L7 12’ 
b 

- ‘812’ 
a -  

-- 

-- 

U coeff ic ients  i n  the expressions f o r  %(i,j) and 
are given i n  Table 2. These should be multiplied by the 

appropriate quant i t ies  f o r  the upper o r  lower surface; fo r  ex- 
ample, 

A 1 1  i9 s for  combined bending and membrane loading are measured 
with respect t o  the upper surface. ther quant i t ies  are defined 
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The i n i t i a l  s t r a i n  s t i f f n e s s  matrices fo r  a tr iangular plate 
element i n  pure bending and combined bending and membrane states 
are derived from the assumptions shown i n  Fig. 35 and defined i n  
integral  form i n  Eq. (15). 

For bending alone, t h i s  matrix i s  defined by: 

* 
= [k 1 

' 4  

xl E 

E 
Y l  
P 

Yxyl 

x2 E 

Y2 
E 

P 
y2 

X3 E 

E 
Y3 

rp 
?Y3/ 
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e element i t i a l  strain. s t i f f n e s s  matrix [k*] may be 
wr i t ten  as: 

where the matrix [W] relates the t o t a l  s t r a ins  to  the general- 
ized displacements, [E] i s  the matrix of coeff ic ients  asso- 
c i a  ted with oke's l a w ,  and the matrix [W;] relates the 
p l a s t i c  s t r a ins  within the element to  the i r  nodal values. The 
las t  array i s  a function matrix whose elements are determined 
from the assumed d is t r ibu t ion  of p l a s t i c  s t r a i n  within the plane 
of the element. For the tr iangular bending element, i t  is  as- 
sumed tha t  the p l a s t i c  s t r a i n s  vary l i nea r ly  i n  the plane. 

Integrating Eq. ( e 2 )  through the thickness of the p l a s t i c  
region of the element and multiplying the t r i p l e  product under 
the in tegra l  r e s u l t  i n  the following form for  the element i n i t i a l  
s t r a i n  matrix: 

* E [ k ] = -  
3(1 - v2) 

Substi tuting the functional var ia t ion  - of the e l a s t i c -p l a s t i c  
boundary, i .e. ,  assuming tha t  z varies  l i nea r ly  i n  the plane of 
the t r iangle ,  and integrating over the area, w e  obtain the f i n a l  
form fo r  the element i n i t i a l  s t r a i n  s t i f f n e s s  matrix 
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11 ere, for  notational brevity,  {[Qi]] i s  a vector'' of 15 matri- 
ces of order (21 x 91, i a e e Y  

whose nonzero elements are given on succeeding pages. 
{Pjl's L j ' s  
are scalar  functions, a l so  defined below. The matrix [z] i s  
the (21 x 18) condensation matrix, given i n  Ref. 42; it  reduces 
the order of the s t i f f n e s s  matrix by imposing a cubic var ia t ion  
on the normal slopes, Finally,  [A] i s  a 2 1  x 21  matrix re- 
l a t ing  the 2 1  degrees of freedom t o  the independent parameters 
a i  
R e f .  42. The scalar quant i t ies  Lj are given by 

The 
are vectors of 15 constants, defined below, and the 

of the f i f t h  order displacement polynomial, a l s o  given i n  

= 2 t 2  - ~ ( g l A l f ~ A  + ; A )  - - - ( z A  1 -  + ; A  + ; A )  2 L1 2 2  3 3  A2 1 1  2 2  3 3  

t -  
Z3b3) = - - ( z  b 4- z2b2 2 2A 1 1 

- ( z  1 -  b 4- 2 b + ~ 3 b 3 ) ( ~ l A l  3- A + A ) A2 1 a 2 2  2 2  3 3  

- sl t -  = - -(z a + z a + z3a3) 3 2A 1 1 2 2  
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I34 

L4 = - -(z 1 -  b f T2b2 f g3b3) 2 

4 2  

- - - 
= - --(z 1 -  a + a "P z a ) (Llbl f z2b2 + z3b3) L5 2A2 2 2  3 3  

2 - = - - ( z a  1 -  + z a  + L a )  a 

L6 4A2 2 2  3 3  

The vectors (Pj} are given by 

I 

1 

I 
1 

' \  

' 0 0  

0 

0 

'20 

'11 

'02 

'21 

'12 

'30 

'03 

' 4 0  

'31 

'22 

'13 

' 0 4  
c '  

' 0  - 
'20 

'11 

B21 

'12 

'30 

' 4 0  

'31 

'22 

' 5 0  

'41 

'13 

'32 

'23 

a , '  

; ipg}' 

0 

'11 

'02 

'21 

'12 

'03 

'31 

'22 

'13 

' 0 4  

' 4 1  

'32 

'23 

' 14 

'05 



ip41 = 

p20 

'21 

' 31  

'22 

p50 

' 4 1  

' 3 0  

' 4 0  

' 3 2  

' 23  

' 6 0  

' 5 1  

' 4 2  

'24 

f l -  

11 

'21 

' 3 1  

' 2 2  

5 3  

' 3 2  

' 4 1  

' 2 3  

' 14 

'51 

' 4 2  

33 

' 2 4  

J 

'02 

'12 

' 0 3  

' 1 3  

'04 

'3-2 

'14 

' 2 3  

'05 

'42 

' 3 3  

'24 

'15 

'06 

The quant i t ies  A i ,  a i P  b i  and Ppq are defined i n  Appendix F e 

The nonzero elements of the [Qi] matrices are given. below. 

remaining six columns, l e t  i, which is  equal t o  1 f o r  columns 
1-3, be 2 f o r  columns 4-6 and 3 fo r  columns 7 - 9 .  

ly the f i r s t  three of nine columns are l i s t e d .  To obtain the 
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2AQ2: (4,3i-2) = 2bi ( 6,3i-2) = 2vbi ( 8,3i) = 8pAi 

(4 ,3 i -b )  = 2vbi ( 6,3i-1)  2bi ( 9,3i-2) = 4VA i 

2AQ3: (4,3i-2) = 2ai ( 6,3i-2)  = 2vai ( 9,3 i )  = 8pAi 
(4,3i-1) = 2vai ( 6,3i-1) = 2ai (1093i-2) = 12vAi 

(5,3i)  = 2pai ( 8,3i-2) = 4Ai (1o93i--l) = 12Ai 
( S93i-1)  = 4vAi 

2AQ4: (7,3i-2) = 6bi ( 9,3i-2) = 2vbi (12,3i) = 12pAi 

[7,3i-1) = 6vbi ( 9,31-1) = 2bi (13,3i-2) = 4vAi 
(8,3i) = 4pbi (11,3i-2) = 24A 

( 1 l Y 3 i - 1 )  = 24vAi 
1 (13,3i-l) = 4A i 

2AQ5: (7,3i-2) = 6ai 

(7,3i-1) = G v a i  

(8,3i-2) = 2bi 
(8,3i-l) = 2vbi 

(8,3i) = 4pai 

( 9,3ii-2) = 2vai 

( 9,3i-1) = 2ai 

( 9,3 i )  = 4pbi 
(10,3i-2) = 6vbi 

(10j3i-1)  = 6bi 

(12,3i-2) = 12Ai 

(12,3i=-1) = 12vAi 
(13,3i) = 161JAi 

(14,3i-2) = 12vAi 

(14,3i-l) = 12Ai 

2AQ6: (8,3i-2) = 2ai (1093i-2) = 6vai (14,3i)  = 121JAi 

(8,3i-1) = 2vai (1093i-1) = 6ai (15,3i-2) = 24vAi 
(9,3i)  = 4pai (13,3i-2) = 4A (15 ,3 i - l )  = 24Ai i 

(13,3i-l) e 4vAi 
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(1I93i -2)  = 12bi 

(11 ,3 i - l )  = 12vbi 

(12,3i)  = Qpb. 
3- 

( 1 l J 3 i - 2 )  = 12ai 

(11,3i-l) = 12vai 

(12 ,3 i - l )  = 6vbi 

(12,3i)  = 6pai 

(12,3i-2) = 6bi 

(12,3i-2) = 6ai 

(12 ,3 i - l )  = 6vai 
(13,3i-2) = 2bi 

(13,3i-l) = 2vbi 

(13,3i) = 8wi 

2AQ10: (13,3i-2) = 2ai 
(13,3i-l) = 2vai 

(14,3i) = 6wi 

2AQ11: (16,3i-2) = 20bi 

(16 ,3 i - l )  = 2Qvbi 

(17,3i)  = 8pbi 

(13,3i-2) = 2vbi 

(13,3i-l) = 2bi 

i (16,31-2) 40A 

(16,3i- l )  = 4QvAi 

(13,3i-2) = 2vai 
(13,3i=-l) = 2ai 
(13,3i) = 8kbi 

(14,3i-2) = Q v b i  

(14,3i-l) = 6bi 

(14,3i-2) = 6vai 

(14 ,3 i - l )  = 6ai 
(14,3i)  = 6pbi 

(15,3i-2) = 12vbi 
(15,3i--l) = 12bi 

(15,3i-2) = 12vai 

(15,3i- l )  = 12ai 

(19,3i-2) = 4A 

(19,3i-=1) = 4vAi 
i 

(18,3i-2) = 2vbi 

(18,3i-l) E 2bi 

(17,3i)  = 16 
(18,3i-2) = 4vAi 

(1$,3i-l) = 4A 1 

i ( l7 ,3i-2)  = 24A 

(17,3i- l )  = 24vAi 

(18,3i) = 24pAi 
(19,3i-2) = 12vAi 

(19,3i--l) = 12Ai 

(18,3i-2) 12Ai 
(18,3i==1) = 12vAi 
(19,3i)  = 24’JAi 

(2O33i-2) = 24vAi 

(20,3i-1) = 24A 1 

(20,3i)  = 16pAi 

(21,3i-2) = 40vAi 
(21 ,3 i - l )  = 40Ai 
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2AQ14: (18,31-2) = 6ai 
(1893i-1) = 6vai 
(19,3i-2) = 2bi 

(19,3i-l) = 2vbi 

(19,3i) = 12I-lai 

(P8,3i-2) = 2vai 
8,3i-1) = 2ai 

(18,3i) = lZFbi 

(20,3i-1) = 12ai 

(20,3i)  = 8pbi 

(19,3i-2) == 6vbi 

(19,3i-l) = 6bi 

and once again, fo r  bending alone, a l l  2 ' s  2 where p = 

are measured with respect t o  the middle surface, 

The i n i t i a l  s t r a i n  s t i f f n e s s  matrix fo r  t h i s  triangu 
ment fo r  the case of comb ng and stretching, and on the 
basis  of the assumptions i g e  35, can be wr i t ten  as 
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* 
k12 

(18 x 9) I 

;k I 

(18 x 9) 
. + - - - - - - - - -  

k21 I k;2 
r 

(6 x 9) (6 x 9) 

where, in th i s  caseg 

U 
xa 
U 

E 

E 
Y1 

U 
x2 
u 

E 

E 
Y2 
PTJ 

yxy2 
hT 
x3 
U 

PU 

E 

Y3 
E 

yxy3 

L 
xl 
L 

E 

Yl 
E 

(I 

* 

€3 

9 
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w i t h  

r) 
d. 

(zlA1 -U + -U z A 9 zuA ) - -(z 1 -u A 2 2  3 3  A2 1 1  

Lu = --(z 3 t  -u b + gub + -U z3b3) 
2 2A 1 1  2 2  

-U -U -U -U -U 
(z b -+ z2b2 9 z b )(z1A1 + z2A2 A2 1 1 3 3  

-U -U - - &(;‘a + z a + z3a3) 
3 2A 1 1  2 2  

1 -u -U -U -U -U - - ( z A  + z A  + ~ A ) ( z  + z2a2 + z3a3) 2 1 1  2 2  3 3  
- 

H 

1 -u -U -U -U -U -U = - -(z a + z a + z a )(zlbl + z b + z3b3) L; %2 1 1  2 2  3 3  2 2  

2 U 1 -u -U -U L6 = - -(z a + z2a2 + z a ) 4A2 3 3  

and 
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with 
n 
h 2 t -L -L -L LT; = 2 t  + ( z A  +,2 (zlAl + z2A2 + LLA ) 1 1  3 3  

- t -L L L =  - ( z  b 4- z 2 2A 1 1  

- -f-(LLa + -L z a + -L z3a3) 
L 3 - 2 A  1 1  2 2  

1 -L -L -L -L -L -L - - (z  a + z a f z a )(zlA1 + z A + z3A3) *2 1 1 2 2  3 3  2 2  

2 
= - -"-.(gLb + LLb + g33)  

4A2 2 2  

2 L 1 -L -L -L L6 = - - ( z  a + z a + z3a3) e 4A2 2 2  

Note thgt  a l l  the matrices used i n  the construction of 
and 
L . ' s  are d i f fe ren t .  
J 

[k:l] 
are as previously defined f o r  bending alone; only the [k12] 

The membrane portions of the i n i t i a l  s t r a i n  matrix may now 
be wri t ten as 
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E ’[ 2 t  - -(z 1 -L A + -L z2A2 L$3) ]A [Gl ] A 1 1  2 1  2(1 - Y ) 
[kZ21 = - 

(H.6d) 

‘L 

ere the [Qj 1 are 6 x 9 matrices, the f i r s t  three columns of 
which are given below, To obtain the remaining s i x  columns, l e t  
i which i s  equal t o  1 for  columns 1-3, be 2 f o r  columns 4-6, 
and 3 fo r  columns 7-9, In addition, the column indices must be 
increased by 3 to  obtain columns 4-6 and by 6 t o  obtain 
columns 7 - 9 ,  
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1 va3 

vbl 

1 a 

Vb2 

2 a 

Vb3 

a3 

a __. l - V  

2 1  

- l - v  
2 b1 

2 

- l - v  
2 b2 

" V  a - 
2 3  

1 - Y  
p_ 

2 b3 

All ;Is are measured with respect t o  the upper surface fo r  
combined bending and membrane loadings. 

As i n  the case of beams, the generated membrane s t r a i n s  may 
be su f f i c i en t ly  large to  cause the e n t i r e  cross section of the 
p l a t e  to  go p l a s t i c  without there being a point within the thiek- 
ness a t  which the p l a s t i c  s t r a i n  i s  zeroo The i n i t i a l  s t r a i n  
s t i f f n e s s  matrix must be modified i n  much the s a m e  manner as w a s  

e beam to accommodate t h i s  case. The functional form 
f o r  the p l a s t i c  s t r a i n s  used i n  deriving the i n i t i a l  s t r a i n  s t i f f -  
ness m a t r i  now becomes: 
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kT 

u 
Y 
PU 

E x 

E 

?,Y 

where 

= f [CY1 

Lu 0' 0 

Lu 0 0 

i 

i 
1 + (KY - 1) qj 2 

2 

where represents the area coordinates, defined i n  Appendix F, 
and 
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L 
-22 

U 
i 

E. 

E 

K u =  { i 

if L U  
€./Ei > 0 - 1 

L U  if €./Ei < 0 
1 

0 

For the lower surface, we have 

L 
E 
X 

L L i  
E Y = [[C,l ; 
PL 

yXY 

L [c2 1 (H.8b) 
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where 

L + K,(2t - z )  

-E 2t - z 

co 0 0 i 

co 0 i 

U. 
1 

0 0 

with 

i f  E i / E i  U L  > Q 

i f  €./ei U L  < Q 

- E i / E i  

L -  Ki - 

1 
0 

This form re t a ins  the assumption of a l inear  p l a s t i c  s t r a i n  dis- 
t r ibut ion,  and, as i n  the case of the beam (Appendix 
fo r  a continuous development of the p l a s t i c  region, 
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TRM 
MT 

The s t i f f n e s s  matrix f o r  e 18-degree-of-freedom triangular 
element w a s  derived i n  Ref. 42. The displacement function used 
w a s  a complete f i f t h  order polynomial: 

D O * ,  

4 5  
XY JY 

The 2 1  degrees of freedom chosen w e r e  the displacements 
the slopes wx. , w the curvatures w,Xxi, w,xyi9 and w, 

a t  each node, and the normal midpoint s lopes  W,ni of each side.  

The la t te r  w e r e  then eliminated by imposing a cubic var ia t ion on 
the edge normal slope W,n 
of -=freedom t r iangle  

W i ,  

Y Y i  1 Y i '  

(see Ref. 42), yielding the 18-degree- 

The i n i t i a l  stress s t i f f n e s s  matrix i s  defined in 'Ref .  45, 
and f o r  t h i s  tr iangular element may be wr i t ten  as 

A 

Here [A] i s  the 2 1  x 2 1  matrix re la t ing  the nodal degrees of 
freedom to  the independent parameters a i  of E q .  (Ie1], as fo l -  
lows 

[ E ]  
s t i f f n e s s  matrix to 18 x 18 
normal slopes as independent degrees of freedom); [ W ]  i s  the 

i s  the condensation matrix, which reduces the 2 1  x 21  
( i o e a g  i t  eliminates tke midpoint 
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and w, t o  the cow function matrix r e l a t ing  the slopes 
e f f i c i e n t s  a i ;  and [ ] is  the matrix of membrane s t r e s s  re- 
sul tan ts : 

Y w g X 9  

M I  = 

N N 
X XY 

N N 
XY Y 

Matrices [A]  and [E] are presented i n  Ref. 42. The ele- 

ments of the product .fs [GI’  [ N ]  @]dA are given below. 

l,i = 0 i = 1, 21 
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2l,21 = 2159 (N ) 
Q$ Y 

After this matrix is formed, it must be pre- and postmulti- 
plied by the product [C]' [Am1]' and its transpose, respectively, 
as shown in Eq. ( 1 e 2 ) e  It must also be transformed (if required) 
to satisfy the boundary conditions, just as the conventional 
stiffness matrix [k(O)] is transformed (see Ref. 42 for types 
of boundary transformations) e 

are defined as follows: 
P4 

The quantities P 

where 

3 

are the local artesian coordinates; xijyi are the local nodal 
coordinates; the ui are the triangular coordinates defined in 
Appendix F; and A is the area of the element. 

Simple formlas for Pp for  orders up to n = p + 

for the initial stress stiffness matrix. Since obtaining suc- 
cinct forms for these e pressions is tedious, a general formula 

;p Ppqfs for n = 7,8 are needed 
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(which includes the lower order terms) is used; t h i s  i s  dev 
as follows6 

y defini t ion,  

Now (a 9 b -P c>p may be wr i t ten  as 

(r)(s)a p r p-r  b res c s 

r = O  s=O 

where 

e t c .  Pi (3 = rl (p - r>% 
Therefore, 

J J  r , s , t , u  a 

But 

n n  
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e f i n a l  form of e in tegra l  ca 
written as 

P r q t  c c  
r=Q s=O t=Q u=Q 

(1.11) 
Txp-r q - t  r-s t-u s u l  
1 1 Y1 x2 y2 x3 Y3J e 



PEN J 

LCU N OF TANTS 

Values of membrane stress resu l tan ts ,  used i n  forming the 
elements of the i n i t i a l  stress s t i f f n e s s  matrices, are required 
i n  the solution of problems of geometric nonlinearity and i n  the 
combined bending and stretching p l a s t i c i t y  analysis,  For s ta t i -  
c a l l y  determinate bending and s t re tching problems, cog,, a rec- 
tangular plate with a uniformly applied membrane load i n  one 
direction, the values of the membrane stress resu l tan ts  remain 
constant throughout the ana lys i s  e However, fo r  s t a t i c a l l y  inde- 
terminate and geometrically nonlinear problems, these membrane 
stress resu l tan ts  nust be calculated from the e l a s t i c  s t r a i n  dis-  
t r ibu t ion  through the thickness a t  nodes f o r  each incremental 
s t e p ,  Various possible d is t r ibu t ions  are shown i n  Figo 78a-e. 

The elastic s t r e s s - s t r a in  r e l a t i o n  f o r  an isotropic  medium 
may be wr i t ten  as follows: 

1 ee = -(a - va ) 
X E x  Y 

where = E42(1 + v) i s  the shear modulus. 

Equations ( J e l l  may e integrated through the thickness to  
obtain 

(0, - va )dz = 
Y 

(Je2a) 



S i m i l a r l y ,  

r 

The membrane stress resu l tan ts ,  Nxs My, and Nxy, may be w r i t -  
ten i n  terns of the Zi3 quant i t ies  as 

I 

M = GYXY R 

XJ' 
(J e 3c) 

Since a l i nea r  d i s t r ibu t ion  through the thickness i s  assumed 

e the values of eij from the elastic s t r a i n  dis t r ibu-  
fo r  both the t o t a l  and p l a s t i c  s t r a i n  components, w e  can readi ly  

t ion through the thickness. For a generic s t r a i n  e, w e  
from Fige 78a 

- 

E IJ-lJ - E (2 t  - LL)) e = ' (eU(2qt) T -+ e T ( a t  - 2qt) - E z 
- 

2 



U and 

surfaces, 2 t  i s  the thickness of the element, and iU and z 
represent the ordinates of the upper and lower e l a s t i c -p l a s t i c  
boundaries, respectively,  measured from the upper surfaceo 

E , cL are the plastic s t r a i n s  a t  the upper and lower sur- 
and e: are the t o t a l  s t r a i n s  a t  the upper and 1 

A t  an e l a s t i c  node, (eu = eL = 0) , q. (5.4) reduces to 

T T - 
e = e,(qt) + e,(t - qt) 

Equations (5.4) and (5 ,5 )  apply a t  nodes where bending predomi- 
nates over membrane behavior (where the t o t a l  s t r a i n s  a t  the two 
surfaces are of opposite sign).  A f u l l y  p l a s t i c  node where the 
t o t a l  s t r a i n s  are of the same sign is i l l u s t r a t e d  i n  Fig. 78b. 
In t h i s  case 

- e==--(e t T  + e  T - - E  U - E L )  e 

2 u  L 

I f  the section is  e n t i r e l y  e l a s t i c ,  w e  have 

e;) 0 

- t T  e = -(e + 2 u  (5.7) 

I f  only the upper o r  the lower surface i s  p l a s t i c  and the t o t a l  
s t r a i n s  are of the same sign (Figs. 78c and 78d) , w e  have 

1 u-u 
E Z  

T T - 
e = t(eL + eu) - 2 

(for the upper surface only) 

or  

-L - 
e = t(e, + eu> - h 2 E L ( 2 t  - ) 

( for  the lower surface only) 
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s (5,8) and (J.9) can be combined to  treat the s i t ua t ion  
shown i n  Pig. 78e. 

-L 1 - 
e = t (e t  + e u4- fL(2 t  - z ) ,  0 (J e 10) 

The values of Nx, Ny, determined i n  t h i s  way are 
nodal values. The actual  value used i n  the i n i t i a l  stress s t i f f -  
ness matrix f o r  the t r iangle  i s  the average of the three nodal 
values. While i t  may be consistent t o  use values f o r  the re- 
su l t an t s  a t  the centroid of the element, such values are more 
d i f f i c u l t  to obtain and require  much additional calculation, The 
difference between centroidal and average values decreases as the 
element s i ze  decreases. 



PE K 

PLATE BENDING BROBLE 

All computations w e r e  carr ied out on the Grumman/LBM 360 /75  
system with a standard maximum avai lable  core storage of 
bytes. For several combined bending and membrane problems, how- 
ever, up t o  512 K bytes of core storage are required, Where 
possible, the computer programs were wr i t ten  i n  a manner tha t  
minimized the use of peripheral storage devices. Consequently, 
no tape u n i t s  w e r e  used. However, random access disk u n i t s  are 
required t o  s tore  components of the element i n i t i a l  s t r a i n  s t i f f -  
ness and i n i t i a l  stress s t i f f n e s s  matrices fo r  the tr iangular 
bending element. 

307 K 

Some typical running times are presented below for  several 
representative problems, The running times are influenced by the 
amount and number of requests f o r  printed output data as w e l l  as 
by the number of degrees of freedom and number of increments re- 
quired for  a solution. 

A s  can be seen from the table,  there i s  a dramatic increase 
i n  required running t i m e s  f o r  problems involving combined bend- 
ing and membrane stress using the tr iangular element [case (i), 
(j) , (k) 1.  In these problems the increased t i m e  occurs as a con- 
sequence of reforming the i n i t i a l  stress s t i f fnes s  matrix i n  each 
increment. Consequently, the t o t a l  s t i f f n e s s  matrix f o r  bending 
must be reformed i n  each increment of load and then the resu l t ing  
system of equations solved, By contrast ,  the required times are 
considerably reduced f o r  bending alone, [cases (a) - (f)  ] o r  for  
bending and membrane problems [cases (g) and (h)]  where the 
s t i f fnes s  matrix remains unchanged throughout the e n t i r e  loading 
range, For these problems, a solution technique i s  used which 
performs an i n i t i a l  factor izat ion of the s t i f fnes s  matrix so 
succeeding solutions require only matrix multiplication. 

The increase i n  computer t i m e  necessary for  those problems 
i n  which i t  i s  required to  solve the system of equations i n  each 
increment becomes apparent when one compares case (b) with 
case (j)@ A s  seen from the tabulation given below, case (j) re- 
quired more than t r i p l e  the running t i m e ,  although ident ical  
numbers of load increments w e r e  re 
addition, case (b) had more degrees of freedom9 members and 
nodes e This comparison suggests t ha t  reforming the s t i f f n e s s  

i red  fo r  both cases and, i n  
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matrix and solving the resu l t ing  system of equations i n  each 
loading s t e p  should be avoided, i f  possibleo In several in- 
stances, however, t h i s  may not be possible (e,g, ,  geometric non- 
1 inear i ty) e 

COMPUTATIONAL REQUIREMENTS FOR SOME REPRESENTATIVE PROBLEMS 

Idea l i za t ion  

Problem Description 

Clamped Square P la t e  

Square Plate-Square 
Hole 

Square P l a t e -  
Circular Hole 

Simply Supported 
Circular P l a t e  

Clamped Ci rcu lar  
P l a t e  

Simply Supported 
Annular P l a t e  

SimpSy Supported 
Rectangular P l a t e  
.=;, ? = '  

Simply Supported 
Rectangular P l a t e  
In-Plane Shear 

Simply Supported 
Circular P l a t e  
, = A  

Simply Supported 
Circular P l a t e  
2 = 0.3 

Annular P l a t e  
, = A  

Presented 
i n  Figure 

46 

47 

49  

51  

54 

56 

60 

6 1  

62 

62 

63 

Members Degrees of Freedom 

36 121 

72 299 

84 266 

50 153 

50 153 
128 387 

110 320 

115 m+ 
50 200 b* 

152 m 
6 4  256 b 

144 m 
128 387 b 

60  m 
50 153 b 

132 m 
110 332 b 

Increments Time i n  
Nodes Required €or Solution Min. 

49 469 6.89 

91 270 14.02 

56 200 14.49 

36 170 7.05 

27.70 36 206 
81  196 

72 120 12.94 

66 241 12.80 

8 1  72 2 .61  

81  133 72.3 

36 270 43.3 

72 121 59.6 

+ 
membrane 

bending * 
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h e  of the major requirements of the incremental geometric 
nonlinearity analysis  i s  the establishment of the current loca l  
coordinate system i n  which displacements i n  the next incremental 
s t ep  are t o  be determined, For a beam element t h i s  task is 
s imple ,  The new loca l  longitudinal axis i s  directed along the 
actual  current ax i s  of the beam element. The transverse axis  i s  
perpendicular t~ it  and directed toward the bottom f ibe r s  of the 
beam (see Fig. 79) 

The transformation matrix r e l a t ing  the displacements re- 
ferred to  local  and global axes may be wr i t ten  as 

where the subscripts Q and g r e fe r  to  local  and global 60- 
ordinate axes, respectively,  For the beam element, 
wri t ten as 

Aw 

A Q  

Au 

1 cos 8 0 -s in  e Aw 

0 1 0 =I s i n  8 0 COS e - 
Au 

where Aw, A e ,  and Au represent the increments of lateral dis-  
placement, ro ta t ion  of the l i n e  element about the y-axis (slope), 
and the axial displacement i n  the local  system, respectively. 
The barred quant i t ies  are the generalized nodal displacements i n  
the global system, We can a l so  w r i t e  

"2 - 1 s i n  e = Q 
"2 - 

Q COS e = 

16 7 



where R i s  the current value of the element length, Values of 
the global coordinates are obtained by summing the increments of 
displacement A;; and A; a t  the nodes and adding them to the 
coordinate values i n  the or ig ina l  conf igurat isn,  

Since the transformation matrix [T] of 9. (L62) i s  an 
orthogonal matrix, w e  can w r i t e  the re la t ionship between the in- 
crements of nodal generalized forces (AP) i n  the local  and 
global axes as 

where AF,, A%, and AI?, represent the increments of lateral 
load, bending moment about the y-axis,, and ax ia l  force i n  the 
local  system, respectively.  

The establishment of a loca l  coordinate system fo r  the tri- 
angular element i s  more complex than tha t  f o r  a beam element. 
the solution of pure bending and combined bending and s t re tching 
problems where geometry changes are neglected , the local  sys tem 
i s  always pa ra l l e l  t o  the global system. However, i n  large- 
def lect ion problems , due t o  the out-of -plane deformations (or 
because of the or ig ina l  configuration i n  the case of a shallow 
she l l ) ,  no s ingle  coordinate system can be used t o  describe the 
local  behavior of the elements, Consequently, a decision w a s  
made to  keep the x-coordinate of each loca l  cQordinate system 
parallel to  a s ide  of the t r iangle  (see Fig. 80a) In particular,  
the 1-2 side of each element w a s  chosen, The y-coordinate i s  
then selected to be perpendicular t o  the x-coordinate and i n  
the plane of the t r iangle .  The z-direction is  perpendicular t o  
the plane of the t r iangle  and i t s  direct ion i s  determined through 
the use of the right-hand ru le .  The location of the centroid of 
the t r iangle ,  with respect to  the global system, may now be de- 
termined by using the relat ionships  

In 
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- - L 

x1 3. x2 * x3 - 
3 x =  c 

- 
3 z =  c 

The global coordinates with or igin a t  the centroid of the 
element (" local  -global" coordinates) are 

" X  " X  i / c  i c X 

Z = z  - z  
i / C  i c 

where the subscript  i / c  denotes the local-global coordinates e 

Vectors i n  the d i rec t ion  of s ides  1- and 1-3 of the t r iangle  
may be obtained from 

- - -  I -  _ -  
= (z3 - x l ) i  f (T3 - yl)j  f (z3 - zl)k = d i  + e? f f$ %3 

where a, b, e o  e * c o  e t c . >  are the corresponding t e r m s  i n  paren- 
thesis ,  and T o  7, 
global Z, 7, Z' axes. A u n i t  vector i n  the loca l  x-direction 
i s  then 

are u n i t  vectors i n  the direct ion of the 
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ences angles a i Q i  = 1, 2,  3) are defined t o  be the angles be- 
tween the local  x-axis and global axes, as shown i n  Figo 80b, 

A vector in the direct ion of the loca l  - z-axis may be ob- 
tained from the vector cross product of R12 and El3" A u n i t  
vector i n  t h i s  direct ion i s  

The angles yi are the angles between the local  z and global 
axes, as shown i n  Fig. 8Oc, 
may be obtained from the vector cross product of uz and ix 

A u n i t  vector i n  the - y-direction 

- - - 
u = u  x u  Y Z X 

where 

= c(cd - a f >  - b(ae - bd) 

Ea = a(ae - bd) - c(bf - ec) 

= b(bf - ec) - a(cd - a f )  

Nl 

*3 

3, 

and the angles f3 e angles betwee the loca l  y and the 
global axes, as s W. Fig. $Ode A l l  global coordi 
now be t ransform the loca l  system by using the 
tion cosines 



X 

Y 

z 

3 cos a 2 cos a 1 cos a 

3 cos y 2 cos y 1 cos y 

e local-global nodal coordinates x i / c 3  yi/,? zilC m y  
be transformed to the local coordinates with origin at the cen- 
ro id  of the triangular element, local z, coordinates will 
e zero, and the x and y coordinates are used to form the 
element stiffness matrices 

The inverse relationship to that given in Eq. ( 
written as 

- 
X 

- 
Y 
- 
z 

s - 
cos B1 cos Y1 

cos B2 cos y 

@OS B3 cos y 

1 

2 

3 

cos a 

2 

3 

cos a 

cos a 

X 

Y 

2 

(L B 11) 

The transformatio of the global increme a1 displacements to 
local coordinates is of the same form as q *  (LAO). -Thus, 

AU 

AV 

Aw 

Au 

- 
AV 

s 

Aw 

(si 0 12) 

The transformation matrix of Eqo (E.12), denoted as [Td], is 
orthogonal matrixe Thus, [ad]’ is used to relate the local 

to global components of the increments of ehe generalized forces 
corresponding to the displacements of 



Since the moments may be t rea ted  as vectors, they w i l l  
transform in the s a m e  ma e displacements Therefore, 

A 

A 

z A 

A 3 cos a a cos a 

cos B2 cos B3 A 

A 3 COS ')' 2 COS y 

(L, 13) 

epresents a relat ionship between three force 
ever, the displacemeat degrees of freedom asso- 

c i a  ted with physical forces are the two slopes w , ~  and 

nate the th i rd  of E q s .  (L.13) e This las t  e q u a t i w  then gives 
must be zero (from p l a t e  theory), we can e l i m i -  

where cos y3 = 0 only i f  y3 = 3-12; i e e s 3  w J X  and w , ~  are 
very la rge  compared to  unity.  Substi tuting fo r  A% 
maining two equations of Eq, ( .13) gives: 

= Dml 
k? 

J 

i n  the re- 

(L * 15) 

(L.16) 
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Using this as OUT guide, we write 

Since we have eliminated A qs, (L.13), we do not 
have an orthogonal transformation, i.e, 

[T ] ' [T  1 = [I] + Q ( e 2 )  m m 

where e2 
rotations) in the strain-displacement relations of q .  (6) To 
maintain a symmetric striffness matrix, we use the relationship 

is equivalent to the nonlinear terms (leea9 squares of 

fully realizing that the approximation involved requires the 
slopes (actually total slope of e surface) to be small compared 
to unity. Hence this analysis is limited to plates and shallow 
shells e 

The derivation of a relationship between curvatures in the 
local and global systems is even more difficult. The three quan- 
tities wyxx9 wlxY, w , ~  in local coordinates must be expressed 
in terms of eighteen global quantities (ices9 w9;g9 w>--9 W y " " ,  
I - I s - I - XY YY 
w 7.- w>--, w,--9 u,-- U,--j e e e y V,;;, e v,;;) if an exact 
transformation of derivatives is made. This leads to unwieldly 
stiffness matrices. Some approximations will be made in order to 
obtain a suitable transformation relation for the curvatures 
These approximations are based on the nature of the theory used, 
the element properties, and the types of problems to be solved, 

- - - 

9x2, yz 2% xx9 xy 

-1 e have from E q ,  ( .12), recalling that [Td]' = [ad] 
- 
Aw = nu cos a + A v  cos p3 -6. Aw cos y3 3 



- 
Aw,- = (Au cos a 4- Av cos B, 4- Aw cos Y 3 ) P z  x 3 

Then, 

or,  us ng the chain ru le ,  

(Le 28) 

Since w e  are dealing with l inear  transformation re la t ions  
between loca l  and global coordinates, w e  have: 

Thus 

- 
The f i n a l  form of the expression f o r  
s t i t u t i n g  fo r  AG from E ~ (L,lg) and reca l l ing  from p l a t e  
theory tha t  Au, Av, and Aw are not functions of the z-coordi- 
nate ,  In addition, since Au and Av are chosen to  be l inear  
functions of x and ,vJ a l l  second and mixed derivatives of 
Au and Av with respect to  x, y, and z are zero, 

A W , $ ~  i s  obtained by sub- 

= cos a, J = COS B, , e tc .  
- ax 
az 



Therefore 9 

2 - 
Aw9-= = cos y3[Aw,= cos a -+ Aw, cos ap cos 4- 

XX 1 XY 

Following the same procedure9 w e  find. 

- 
Aw,,, = cos y3[nw,= cos a CQS a -% Aw, CQS a cos @ 8 

XY 1 2 XY 1 2 
(L 24b) 

I Aw, COS a COS B, + Aw, COS 8,  COS B 2 j  
F 2 BY 

- 
= cos y3[nw9gx cos a cos a + Aw, cos a cos B, +- Aw9* 1 2 XY 2 

(L 24c) 
AwJF COS a COS B2 .f Aw, COS B1 COS B z j  1 

1 YY 

cos a cos B 2 
2 - 

Aw9--  STY = cos y3[Aw 9xx cos a 2 Aw9xy 

A w ~ ~  COS a COS B2 .9. Aw, COS 2 1  B a j  
2 YY 

Equations (L,24a) through (E.24d) represent the transforma- 
tion of the in-plane curvature " t i l t e d "  by the angle y 

ansformation r e l a t ions  between curvature may be w 

(e D 25) 
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where 

cos a cos a 1 os apes B2 
[T ,~ 1 - = 
h cos alcos a cos a cos B 2 2 

2 s a cos B2 1 cos a 2 2 

and 

2 
1 cos B 1 cos a fos  B 

cos a cos B2 cos B p o s  B, 

cos a2cos B2 cos B2 

1 
2 

JA.] = 
’ 1  Q 

a 

ce again [T,]’[T,] = [ I ]  only f o r  f l a t  configurations. 
For shallow configurations the e r ro r  w i l l  be small. Thus, w e  use 

and to  maintain symmetry of e s t i f f n e s s  matrix, 

(Le27) 

where CAP,] represents the generalized nodal forces associated 
with the curvatures 
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Finally, the over-all transformation matrix [TI  of 
Eq. ( E e l )  is written as 

(L.28) 

l a  a 
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Fig. 36 (Cont) Stress and Plastic Strain Distributions 
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(a) Ini t ia l  Loading (b) Reversed Loading 

Fig. 37 Depth of Elastic-Plastic Boundary For Multiaxial Cyclic Loading 
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Fig. 71 ELASTIC-PLASTIC RESPONSE OF A RESTRAINED BEAM 
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